Binnomial congruence modulo prime number

Let $1leq{j}<p-1$ with $p$ a prime number; is it true that for any positive integer $n, nnotequiv{j}(mod{(p-1}))$ , the congruence $sum_{r>1}{nchoose rcdot(p-1)+j}cdot{r-1choose j}equiv 0(mod p)$ is valid?