Find the values of A and B for 10 different positions of Fun1. I need to show thee relation B=16A holds for each of the ten values.

```
ClearAll(f, t, P, PO)
f(x_) := x^3
df(x_) = f'(x);
tan(x_, x0_) := f(x0) + df(x0) (x - x0)
NSolve(tan(x, 1.2) == f(x), x)
NSolve(tan(x, -2.4) == f(x), x)
Module({x, pts, names, offsets, ptlbls, arealbls}, x(0) = 1.2;
x(1) = -2.4; x(2) = 4.8;
pts = {{x(0), f(x(0))}, {x(1), f(x(1))}, {x(2), f(x(2))}};
names = {"Fun1", "Fun2", "Fun3"};
offsets = {{10, -10}, {10, -10}, {-15, 3}};
ptlbls = MapThread(Text(#1, Offset(#2, #3)) &, {names, offsets, pts});
arealbls = {Text("A", Offset({-20, 2}, (pts((1)) + pts((2)))/2)),
Text("B", Offset({0, -35}, (pts((2)) + pts((3)))/2))};
Plot(Evaluate@{f(x), tan(x, x(0)), tan(x, x(1))}, {x, -3, 5},
Epilog -> {ptlbls, {Red, AbsolutePointSize(5), Point(pts)},
arealbls}))
```
```