# differential equations – How to get rid of roots in matrix solutions in Mathematica

I am working with matrix in Mathematica. In finding eigenvalues of the matrix, I get it in the roots and I do not know how to solve them in Mathematica. The matrix is:

X=MatrixForm({{0, 0, 0, 1/12 – 1/(E^(10*(Beta))12) – 1/(E^(4(Beta))12) + 1/(E^(2(Beta))12), 0, 1/(E^(5(Beta))3), 1/12 + 1/(E^(10(Beta))12) + 1/(E^(4(Beta))12) + 1/(E^(2(Beta))12), 0},
{0, 1/(E^(5
(Beta))3), 1/12 + 1/(E^(10(Beta))12) + 1/(E^(4(Beta))12) + 1/(E^(2(Beta))12), 0, 0, 0, 0, 1/12 – 1/(E^(10(Beta))12) + 1/(E^(4(Beta))12) – 1/(E^(2(Beta))12)},
{0, 1/12 + 1/(E^(10
(Beta))12) + 1/(E^(4(Beta))12) + 1/(E^(2(Beta))12), 1/(E^(3(Beta))3), 0, 1/12 – 1/(E^(10(Beta))12) – 1/(E^(4(Beta))12) + 1/(E^(2(Beta))12), 0, 0, 0},
{1/12 – 1/(E^(10
(Beta))12) – 1/(E^(4(Beta))12) + 1/(E^(2(Beta))12), 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1/12 – 1/(E^(10(Beta))12) – 1/(E^(4(Beta))12) + 1/(E^(2(Beta))12), 0,
1/(E^(5
(Beta))3), 0, 0, 0}, {1/(E^(5(Beta))3), 0, 0, 0, 0, 0, 1/12 – 1/(E^(10(Beta))12) + 1/(E^(4(Beta))12) – 1/(E^(2(Beta))12), 0},
{1/12 + 1/(E^(10
(Beta))12) + 1/(E^(4(Beta))12) + 1/(E^(2(Beta))12), 0, 0, 0, 0, 1/12 – 1/(E^(10(Beta))12) + 1/(E^(4(Beta))12) – 1/(E^(2(Beta))12), 0, 0},
{0, 1/12 – 1/(E^(10
(Beta))12) + 1/(E^(4(Beta))12) – 1/(E^(2(Beta))*12), 0, 0, 0, 0, 0, 0}})