hash – Since GPUs have gigabytes of memory, does Argon2id need to use gigabytes of memory as well in order to effectively thwart GPU cracking?

The common advice of benchmarking a password hashing algorithm and choosing the slowest acceptable cost factor doesn’t work for algorithms with more than one parameter: adding a lot of iterations at the expense of memory hardness makes the benchmark time go up, but if the attacker can still grab off-the-shelf hardware (like a regular gaming graphics card) then I might as well have used pbkdf2 instead of Argon2id. There must be some minimum amount of memory that makes Argon2id safer than a well-configured algorithm from the 90s, otherwise we could have saved ourselves the effort of developing it.

I would run benchmarks and just see for myself at what point hashing isn’t faster anymore on a GPU than on a CPU, but Hashcat lacks Argon2 support altogether. (Though any software I choose isn’t necessarily going to be the fastest possible implementation to give me a correct answer anyway.)

Even my old graphics card from 2008 had 1GB of video memory and 2020 cards seem to commonly have 4-8GB. Nevertheless, the default Argon2id setting in PHP is to use 64MiB of memory.

If you set the parallelism of Argon2id to your number of CPU cores (say, 4) and use this default memory limit, is either of the following (roughly) true?

  • A GPU with 8192MB of memory can still use 8192/64 = 128 of its cores, getting a 32× speed boost compared to your CPU. The slowdown on GPUs due to increased memory requirements is a linear scale. The only way to thwart GPU cracking effectively, is to make Argon2id use more RAM than a high-end GPU has when divided by the number of parallelism you configure in Argon2id (i.e. in this example with 4 cores, Argon2id needs to be set to use 8192/4 = 2048MB).


  • This amount, 64MiB, already makes a common consumer GPU completely ineffective for cracking because it is simply too big to efficiently use from a simple GPU core (because if the core has to access the card’s main memory then it’s not worth it, or something).