mathematical optimization – How to fix the following code to optimize the function?

I have previously used this code to find the angles (vector of angles, ang) for which my energy (ene function) is optimized and this code is working properly:

f((ScriptL)0_Integer?NonNegative) := 
f((ScriptL)0) = 
Module({ne = 2 (ScriptL)0 + 2, vars, cons, mtablep, M, ene}, 
vars = Array(Symbol("x$" <> ToString(#)) &, ne);
vars((1)) = 0;
vars((ne)) = (Pi)/2;
cons = Apply(And, Thread(0 <= vars((2 ;; ne - 1)) <= (Pi)/2));
mtablep = Riffle(Range(0, -(ScriptL)0, -1), Range((ScriptL)0));

M((ScriptL)_, p1_, pp1_, p2_, pp2_) := 
If(mtablep((p1)) + mtablep((pp1)) == 
  mtablep((p2)) + mtablep((pp2)), 
 Sum((2 (ScriptL) + 1)^2 (2 (ScriptL)temp + 1)/(4 (Pi)) Sum(
    If(mtablep((p1)) + mtablep((pp1)) == mval && 
      mtablep((p2)) + mtablep((pp2)) == mval, 
     ThreeJSymbol({(ScriptL), mtablep((p1))}, {(ScriptL), 
        mtablep((pp1))}, {(ScriptL)temp, -mval})*
      ThreeJSymbol({(ScriptL), mtablep((p2))}, {(ScriptL), 
        mtablep((pp2))}, {(ScriptL)temp, -mval})*
      ThreeJSymbol({(ScriptL), 0}, {(ScriptL), 
         0}, {(ScriptL)temp, 0})^2, 
     0), {mval, -(ScriptL)temp, (ScriptL)temp}), 
     {(ScriptL)temp, 0, 2 (ScriptL)}), 0);

  ene(ang_?VectorQ) := 
  Sum((Cos(ang((p1))) Sin(ang((pp1 + 1))) - 
    Sin(ang((p1 + 1))) Cos(ang((pp1))) + 
    If(p1 == pp1, Sin(ang((p1 + 1))) Cos(ang((p1))), 
     0)) (Cos(ang((p2))) Sin(ang((pp2 + 1))) - 
    Sin(ang((p2 + 1))) Cos(ang((pp2))) + 
    If(p2 == pp2, Sin(ang((p2 + 1))) Cos(ang((p2))), 
     0)) M((ScriptL)0, p1, pp1, p2, pp2), {p1, 1, 
  2 (ScriptL)0 + 1}, {p2, 1, 2 (ScriptL)0 + 1}, {pp1, 1, 
  p1}, {pp2, 1, p2});
  {ne, #} & /@ 
  NMinimize({ene(vars), cons}, vars((2 ;; ne - 1)), 
   Method -> "SimulatedAnnealing"))

asking for

 (ScriptL)0 = 1
 f((ScriptL)0)

I get

   {{4, 0.17206861748693228`}, {4, {x$2 -> 0.3953992190472485`, 
    x$3 -> 0.6879102337804962`}}}

Now I want to use the same method for different functions, as an example I have this routine:

k((ScriptL)0_Integer?NonNegative) := 
k((ScriptL)0) = 
 Module({ne = 2 (ScriptL)0 + 2, vars, cons, (Gamma), factorFxn, 
ene}, vars = Array(Symbol("x$" <> ToString(#)) &, ne);
vars((1)) = 0;
vars((ne)) = (Pi)/2;
cons = Apply(And, Thread(0 <= vars((2 ;; ne - 1)) <= (Pi)/2));
 (Gamma) = 
Join(Table({i, 1}, {i, -(ScriptL)0, (ScriptL)0}), 
 Table({i, -1}, {i, -(ScriptL)0, (ScriptL)0}));

factorFxn((ScriptL)_, m1_, m2_, p1_, p2_) := 
If((Gamma)((m1, 2)) == (Gamma)((p1, 2)) && (Gamma)((m2, 
    2)) == (Gamma)((p2, 2)),
 If((Gamma)((p1, 1)) - (Gamma)((m1, 1)) == (Gamma)((m2, 
     1)) - (Gamma)((p2, 1)), 
  Sum((2 (ScriptL) + 1)^2 Sum(
     If((Gamma)((p1, 1)) - (Gamma)((m1, 1)) == 
        mval && (Gamma)((m2, 1)) - (Gamma)((p2, 1)) == 
        mval, (-1)^((Gamma)((m1, 1)) + (Gamma)((m2, 1)) + 
          mval) ThreeJSymbol({(ScriptL), -(Gamma)((m1, 
           1))}, {(ScriptL), (Gamma)((p1, 
          1))}, {(ScriptL)temp, -mval}) 
 ThreeJSymbol({(ScriptL)temp, 
         mval}, {(ScriptL), -(Gamma)((m2, 
           1))}, {(ScriptL), (Gamma)((p2, 
          1))}) ThreeJSymbol({(ScriptL), 0}, {(ScriptL), 
         0}, {(ScriptL)temp, 0})^2, 
      0), {mval, -(ScriptL)temp, (ScriptL)temp}), 
 {(ScriptL)temp, 0, 2 (ScriptL)}), 0)
 , 0);

  ene(th1_?VectorQ) :=(*(2 (ScriptL)0 +1)^2*) Sum(
    (Cos(th1((p2))) Cos(th1((p1))) + 
       Cos(th1((p2))) Sin(th1((p1 + 1))) + 
       Cos(th1((p1))) Sin(th1((p2 + 1))) + 
       Sin(th1((p2 + 1))) Sin(th1((p1 + 1))) + 
       If(p1 == p2, Cos(th1((p1))) Sin(th1((p1 + 1))), 
        0)) factorFxn((ScriptL)0, m1, m2, p1, p2)
    , {p1, 1, 2 (ScriptL)0 + 1}, {m1, 1, 2 (ScriptL)0 + 1}, {p2,
      1, p1}, {m2, 1, m1}) {ne, #} & /@ 
 NMinimize({ene(vars), cons}, vars((2 ;; ne - 1)), 
  Method -> "SimulatedAnnealing"))

but k(1) gives me nothing, and I cannot find where the problem is. I will be very thankful if someone can help me fix this.