Given:

$eq=-frac{1}{2} text{$varpi $1}^T.text{J1}.text{$varpi $1}-frac{1}{2} Omega^T.text{jp}.Omega+frac{1}{2}left(text{Jp}+text{Jp}^Tright)^T.Omega$

where $J1$, $jp$ and $Jp$ – $3 times 3$ matrices.

$text{$varpi $1}$ and $Omega$ – $3 times 1$ vectors.

I want to get such result, i.e. force parenthesis $Omega$:

$eq=(frac{1}{2}left(text{Jp}+text{Jp}^Tright)^T-frac{1}{2} Omega^T.text{jp}).Omega-frac{1}{2} text{$varpi $1}^T.text{J1}.text{$varpi $1}$

But the `TensorReduce`

doesn’t work. I understand why this is not happening – Mathematica is not clear if the expression in parentheses has the same dimension.

*Is there any way to get around these restrictions?*

```
eq = 1/2 Transpose(Transpose(Jp) + Jp).(CapitalOmega)(t) -
1/2 Transpose((CurlyPi)1(t)).J1.(CurlyPi)1(t) -
1/2 Transpose((CapitalOmega)(t)).jp.(CapitalOmega)(t) //
TensorReduce
```