Numerical Integration – Ntegration and Exclusions


I am trying to integrate a long function with the MonteCarlo method. The code gives an answer because I programmed the function, but if I try to define an exclusion range, I get an error because I define that range with an inequality. Is there a way to achieve this?

[Alpha] : = 1 / 137,036
[Beta] : = 1
index[m, [Mu]]: = 105,6583745000
index[m, e] = 0.5109989461
SubPlus[E] : = 2 0,0005 index[m, [Mu]]index[E, [Gamma]]: = 2 0.1890 index[m, [Mu]]index[x, 0] = 0.0005
index[x, 1] : = 1
index[y, 0] = 0.189
index[y, 1] : = 1
index[z, 0] : = -1
index[z, 1] = Cos[[Pi]/ 6][CapitalDelta][z_]    : = 1 - [Beta] z
Gvm1[x_, y_] : =
8 (y 2 (3 - 2 y) + 6 x y (1 - y) + 2 x ^ 2 (3 - 4 y) - 4 x ^ 3)
G v0[x_, y_] : =
8 (-x y (3-y-y ^ 2) -x ^ 2 (3-y-4y ^ 2) + 2 x ^ 3 (1 + 2y))
Gv1[x_, y_] : = 2 (x ^ 2 y (6 - 5 y - 2 y ^ 2) 2 x ^ 3 y (4 + 3 y))
gv2[x_, y_] : = 2 x ^ 3 y ^ 2 (2 + y)
R[y_] : = (2 [Alpha]) / (
3 [Pi]) (Log[Y/2Index[Y/2Subscript[y/2Index[y/2Subscript[m, [Mu]]/Index[m, e]]- 19/12)
nov[x_, y_, z_] : =
4 (1 - [Beta]^ 2) ((
2 x) / [CapitalDelta][z]^ 2 (x + y) (2 (x + y) - 3) + (
x ^ 2 y) / [CapitalDelta][z]    (3 - 4 (x + y)) + x ^ 3 y ^ 2) +
Gvm1[x, y]/ [CapitalDelta][z]    +
G v0[x, y] + [CapitalDelta][z]    Gv1[x, y] + [CapitalDelta][z]^ 2 Gv2[
 x, y]  
f1[x_, y_, z_] : = [Alpha]/ (16 [Pi]^ 2 y) (1 - R[y]nov[x, y, z]  
NIntegrate[
f1[x, y, z]{{, Index[x, 0], Index[x, 1]}, {y, index[y, 
  0], Index[y, 1]}, {z, index[z, 0], Index[z, 1]},
Method -> "MonteCarlo", MaxRecursion -> 1000000,
Exclusions -> {[CapitalDelta][z]    > = (x + y - 1) / (x * y)}]