plotting – How to compile the following code in short span?


The following code compiles soon for small values of n (n=2) but when n=10 in such cases it takes much time. For n=10 case even after 7 hours i did not get output. So could anyone please help me to solve this issue.

Thank you

a = 1;
(Alpha) = 3/4;
n = 10;
h = a/n;
Subscript(t, 0) = 0;
Subscript(f, 1)(t_) := (Exp(t)*Sin(t)) + (Exp(t)*Cos(t));
Subscript(f, 2)(r_) := -(Exp(r)*Sin(r)) + (Exp(r)*Cos(r));
x(Subscript(t, 0)) = 0;
y(Subscript(t, 0)) = 1;
Subscript(t, 0) = 0;
Subscript(d, 1) = 0;
Subscript(d, 2) = 1;
Subscript(g, 1)(c_, d_) := (Exp(c)*Sin(c)) + (Exp(d)*Cos(d));
Subscript(g, 2)(q_, w_) := -(Exp(q)*Sin(q)) + (Exp(w)*Cos(w));
For(j = 1, j <= n, j++, Subscript(t, j) = (j*h);
 Subscript(e, 1) = 
  x(Subscript(t, j - 1)) + 
   h^((Alpha))/
    Gamma((Alpha) + 1) Subscript(f, 1)(Subscript(t, j - 1));
 Subscript(v, 1) = 
  y(Subscript(t, j - 1)) + 
   h^((Alpha))/
    Gamma((Alpha) + 1) Subscript(f, 2)(Subscript(t, j - 1));
 
 x(Subscript(t, j)) = 
  h^((Alpha))/
    Gamma((Alpha) + 
      2) ((j - 1)^((Alpha) + 1) - (j - (Alpha) - 
         1) j^((Alpha))) Subscript(f, 1)(Subscript(t, 0)) + 
   Subscript(d, 1) + 
   h^((Alpha))/
    Gamma((Alpha) + 
      2) Sum(((j - k + 1)^((Alpha) + 
           1) - (2*(j - k)^((Alpha) + 1)) + ((j - k - 1)^((Alpha) + 
            1))) Subscript(f, 1)(Subscript(t, k)), {k, 1, j - 1}) + 
   h^((Alpha))/
    Gamma((Alpha) + 2) Subscript(g, 1)(Subscript(e, 1), Subscript(v, 
     1));
 y(Subscript(t, j)) = 
  h^((Alpha))/
    Gamma((Alpha) + 
      2) ((j - 1)^((Alpha) + 1) - (j - (Alpha) - 
         1) j^((Alpha))) Subscript(f, 2)(Subscript(t, 0)) + 
   Subscript(d, 2) + 
   h^((Alpha))/
    Gamma((Alpha) + 
      2) Sum(((j - k + 1)^((Alpha) + 
           1) - (2*(j - k)^((Alpha) + 1)) + ((j - k - 1)^((Alpha) + 
            1))) Subscript(f, 2)(Subscript(t, k)), {k, 1, j - 1}) + 
   h^((Alpha))/
    Gamma((Alpha) + 2) Subscript(g, 2)(Subscript(e, 1), Subscript(v, 
     1))
 )
ListPlot(Table({Subscript(t, j), x(Subscript(t, j))}, {j, n}))
```