I have a 3*3 matrix. Using Mathematica I have found the eigenvalues in terms of “K”. The problem arises when I’m plotting the real part of eigenvalues against “k” (k is a positive number ranging from 0.02 to 0.05). Can someone guide me, why I’m getting empty?
(*Here is my Matrix*)
J1 = {{-v^2 - w^2 - F - D1*k^2, -2*u*v, -2*u*w}, {v^2,
2*u*v - (F + k1) - D2*k^2, 0}, {w^2, 0,
2*u*w - (F + k2) - D3*k^2}};
(*I have defined the eigen values as the function of the following
parameters*)
{(Lambda)4(F_, D1_, D2_, D3_, k1_, k2_, u_, v_,
w_), (Lambda)5(F_, D1_, D2_, D3_, k1_, k2_, u_, v_,
w_), (Lambda)6(F_, D1_, D2_, D3_, k1_, k2_, u_, v_, w_)} =
Eigenvalues(J1);
(*Here are the numerical values of the parameters*)
{(Lambda)4(0.025,
290, 61.443, 11, 0.0043, 0.046, 0.381, 0.0767, 0.186), (Lambda)5(
0.025, 290, 61.443, 11, 0.0043, 0.046, 0.381, 0.0767,
0.186), (Lambda)6(0.025, 290, 61.443, 11, 0.0043, 0.046, 0.381,
0.0767, 0.186)};
(*Plotting the real part of the eigen values against k*)
Plot({Re(
(Lambda)1), Re((Lambda)2), Re((Lambda)3)}, {k, 0.01, 0.05},
PlotStyle -> {{Thick, Red}, {Thick, Blue}}, Frame -> True,
FrameLabel -> {Style("k", 18), Style("Re((Lambda))", 18)})