Problem with the plots of eigenvalues of the Matrix

I am trying to plot the eigenvalues of the following matrix

hamil(kx_,ky_,kz_)={{-10.6`, -0.25` E^(
    I (-0.625` kx - 0.21650635094610965` ky - 
       0.43666666666666665` kz)) - 
   0.7` E^(I (0.375` kx - 0.21650635094610965` ky - 
       0.43666666666666665` kz)) - 
   0.25` E^(
    I (-0.125` kx + 0.649519052838329` ky - 0.43666666666666665` kz)),
   E^((0.` + 
      0.43666666666666676` I) kz) (-0.25` E^((0.` - 
          0.125` I) kx - (0.` + 0.649519052838329` I) ky) + 
     E^((0.` - 0.625` I) kx + (0.` + 
          0.21650635094610965` I) ky) (-0.25` - 
        0.7` E^((0.` + 1.` I) kx)))}, {E^((0.` - 
       0.375` I) kx - (0.` + 0.649519052838329` I) ky + (0.` + 
       0.43666666666666665` I) kz) (-0.25` E^((0.` + 0.5` I) kx) + 
     E^((0.` + 0.8660254037844386` I) ky) (-0.7` - 
        0.25` E^((0.` + 1.` I) kx))), -10.6`, 
  E^((0.` - 0.5` I) kx - (0.` + 0.43301270189221935` I) ky - (0.` + 
       0.43666666666666665` I) kz) (-0.25` - 
     0.25` E^((0.` + 1.` I) kx) - 
     0.7` E^((0.` + 0.5` I) kx + (0.` + 
          0.8660254037844387` I) ky))}, {E^((0.` - 
       0.375` I) kx - (0.` + 0.21650635094610965` I) ky - (0.` + 
       0.43666666666666676` I) kz) (-0.7` - 
     0.25` E^((0.` + 1.` I) kx) - 
     0.25` E^((0.` + 0.5` I) kx + (0.` + 0.8660254037844386` I) ky)), 
  E^((0.` - 0.43301270189221935` I) ky + (0.` + 
       0.43666666666666665` I) kz) (-0.7` + 
     E^((0.` - 0.5` I) kx + (0.` + 
          0.8660254037844387` I) ky) (-0.25` - 
        0.25` E^((0.` + 1.` I) kx))), -10.6`}}

Now the eigenvalues as function of kx, ky and kz are

{es1(kx_, ky_, kz_), es2(kx_, ky_, kz_), es3(kx_, ky_, kz_)} = 
  Eigenvalues(hamil(kx, ky, kz)) // FullSimplify;

Now plotting all the three eigenvalues

Plot({Chop(es1(0, 0, z)), Chop(es2(0, 0, z)), Chop(es3(0, 0, z))}, {z,
   0, (Pi)/1.31})

enter image description here

I don’t understand why is there a sudden jump in blue plot and green plot? Is there a way to rectify this? Is this problem also occur when solving eigenfunctions?