# Problem with the plots of eigenvalues of the Matrix

I am trying to plot the eigenvalues of the following matrix

``````hamil(kx_,ky_,kz_)={{-10.6`, -0.25` E^(
I (-0.625` kx - 0.21650635094610965` ky -
0.43666666666666665` kz)) -
0.7` E^(I (0.375` kx - 0.21650635094610965` ky -
0.43666666666666665` kz)) -
0.25` E^(
I (-0.125` kx + 0.649519052838329` ky - 0.43666666666666665` kz)),
E^((0.` +
0.43666666666666676` I) kz) (-0.25` E^((0.` -
0.125` I) kx - (0.` + 0.649519052838329` I) ky) +
E^((0.` - 0.625` I) kx + (0.` +
0.21650635094610965` I) ky) (-0.25` -
0.7` E^((0.` + 1.` I) kx)))}, {E^((0.` -
0.375` I) kx - (0.` + 0.649519052838329` I) ky + (0.` +
0.43666666666666665` I) kz) (-0.25` E^((0.` + 0.5` I) kx) +
E^((0.` + 0.8660254037844386` I) ky) (-0.7` -
0.25` E^((0.` + 1.` I) kx))), -10.6`,
E^((0.` - 0.5` I) kx - (0.` + 0.43301270189221935` I) ky - (0.` +
0.43666666666666665` I) kz) (-0.25` -
0.25` E^((0.` + 1.` I) kx) -
0.7` E^((0.` + 0.5` I) kx + (0.` +
0.8660254037844387` I) ky))}, {E^((0.` -
0.375` I) kx - (0.` + 0.21650635094610965` I) ky - (0.` +
0.43666666666666676` I) kz) (-0.7` -
0.25` E^((0.` + 1.` I) kx) -
0.25` E^((0.` + 0.5` I) kx + (0.` + 0.8660254037844386` I) ky)),
E^((0.` - 0.43301270189221935` I) ky + (0.` +
0.43666666666666665` I) kz) (-0.7` +
E^((0.` - 0.5` I) kx + (0.` +
0.8660254037844387` I) ky) (-0.25` -
0.25` E^((0.` + 1.` I) kx))), -10.6`}}
``````

Now the eigenvalues as function of kx, ky and kz are

``````{es1(kx_, ky_, kz_), es2(kx_, ky_, kz_), es3(kx_, ky_, kz_)} =
Eigenvalues(hamil(kx, ky, kz)) // FullSimplify;
``````

Now plotting all the three eigenvalues

``````Plot({Chop(es1(0, 0, z)), Chop(es2(0, 0, z)), Chop(es3(0, 0, z))}, {z,
0, (Pi)/1.31})
``````

I don’t understand why is there a sudden jump in blue plot and green plot? Is there a way to rectify this? Is this problem also occur when solving eigenfunctions?