Calculate the inertial moments

$I_x$, $I_y$, $I_z$ respect of the coordenate planes of one homemogenius solid $T$ given by

$(frac{x^2 } {a^2 }+ frac{y^2 } {b^2 } +frac{z^2 } {c^2 })^2 =frac{x^2 } {a^2 } +frac{y^2 } {b^2 }-frac{z^2 } {c^2 } $.where $a, b, c>0$.

My book defines

$I_x=int int int_W (x^2 +y^2 ) delta dxdydz$ where $delta$ is the density in each point of the solid $W$

I can’t visualize $T$, the first thing that I think can be useful is a coordinate change given by $x=au$, $y=bv$, $z=cw$.

Is my idea right?

Any help will be appreciated and useful.