simplifying expressions – Problem in FullSimplify with assumptions:

For the vector $psi = { 0,F1,alpha ,0,beta ,0,0,F2} $, I am trying to simplify ${left| psi right|^2}$ where
$alpha = cos (theta )$,
$beta = sin left( theta right)$,
$F1 = {{cos left( theta right)nu } over {{{left( {1 – {{rm{e}}^{ – {{2pi Omega } over r}}}} right)}^{1/2}}}}$, and
$F2 = {{sin left( theta right)nu {{rm{e}}^{ – {{pi Omega } over r}}}} over {{{left( {1 – {{rm{e}}^{ – {{2pi Omega } over r}}}} right)}^{1/2}}}}$, and all parameters ($theta, nu,Omega,r $) are reals. I used:

(Alpha) = Cos((Theta));
(Beta) = Sin((Theta));
F1 = (Cos((Theta)) (Nu))/(1 - E^(-((2 (Pi) (CapitalOmega))/r)))^(
  1/2);
F2 = ( Sin((Theta)) (Nu) E^(-(((Pi) (CapitalOmega))/r)))/(1 - 
    E^(-((2 (Pi) (CapitalOmega))/r)))^(1/2);

(Psi) = {0, F1, (Alpha), 0, (Beta), 0, 0, F2};

FullSimplify(
 Norm((Psi))^2, {(CapitalOmega), (Nu), r, (Theta)} (Element) 
  Reals)

But Mathematica still considers $r$ is complex, where the output contains the term ${mathop{rm Re}nolimits} left( {{1 over r}} right)$.
Did I miss anything?