Convert data to chart with PHP MySQL

I have a table called cell_daily in my database where the records are
Here

I want to use PHP to convert this data to a diagram, just like in this diagram example

I'm stuck when I use date Column as xAxis is always looped. Can you help me to solve this problem and which diagram should I use?
For your information: The table must always be updated by the user.

Plotting – 3D Plot multiple maximizations in one chart

My objective function, $ f (r, k; s, d) $takes three different expressions, denoted by $ f ^ 1 $. $ f ^ 2 $, and $ f ^ 3 $Depending on the conditions for the arguments and parameters as follows:

$ f ^ 1 (r, k; s, d) = frac {3s left (d ^ 2-k ^ 2 r right) + k ^ 2 r (3 d + kr) -6 ds ^ 2 + 3 s ^ 3} {6 s ^ 2} $ when $ 0 leq d leq 1, s geq 2 d, 0 leq k <d, 0 leq r leq 1 $.

$ f ^ 2 (r, k; s, d) = frac {d ^ 3 + 3 d ^ 2 (k (r-1) -s) + 3 d left (k ^ 2 ((r-3) ) r + 1) +2 kr s-2 (r-1) s ^ 2 right) + k ^ 3 (r ((r-1) r + 3) -1) -3 k ^ 2 r ^ 2 s + 3 (r-1) s ^ 3} {6 (r-1) s ^ 2} $ when $ 0 leq d leq 1, s geq 2 d, d leq k leq s, 0 leq r < frac {d} {k} $.

$ f ^ 3 (r, k; s, d) = frac {d ^ 3 + 3 d ^ 2 kr + 3 dr left (k ^ 2 (r-1) -2 s ^ 2 right) + k ^ 3 (r-1) ^ 2 r + 3 rs ^ 3} {6 rs ^ 2} $ when $ 0 leq d leq 1, s geq 2 d, d leq k leq s, frac {d} {k} leq r leq 1 $,

My ultimate goal is to find the optimal value of $ r $ and $ k $ where the objectively works $ f $ will be maximized in all three cases. It has turned out that working with analytical solutions is quite daunting. So I'm working with numerical simulations that are limited to the parameter values ​​of $ d in [0,1]$ and $ s in [0,2]$,

My strategy is as follows:

First, create a code that solves the maximization problem for each of the three functions above and calculates the maximized value of the function and the corresponding optimum $ r $ and $ k $ (This is of course a function of $ s $ and $ d $.) For example, for the first case of $ f ^ 1 $let me call you by $ f ^ {1 *} $. $ r ^ {1 *} $, and $ k ^ {1 *} $; and the same for the cases of $ f ^ 2 $ and $ f ^ 3 $,

Second, with Plot3D, Plot $ f ^ {1 *} $. $ f ^ {2 *} $, and $ f ^ {3 *} $ in one and the same diagram $ d in [0,1]$ and $ s in [0,2]$; in a similar way action $ r ^ {1 *} $. $ r ^ {2 *} $, and $ r ^ {3 *} $ in one and the same diagram $ d in [0,1]$ and $ s in [0,2]$and action $ k ^ {1 *} $. $ k ^ {2 *} $, and $ k ^ {3 *} $ in one and the same diagram $ d in [0,1]$ and $ s in [0,2]$,

Finally, the first diagram allows a comparison $ f ^ {1 *} $. $ f ^ {2 *} $, and $ f ^ {3 *} $I can get the maximum value of the objective function $ f $and by looking at the second and third graphs I can get the corresponding optimum $ r $ and $ k $I'm looking for.

My Mathematica code for this is as follows (this is an extension of Alex Trounev's answer in the results of 3D Plot Optimization for different parameter values):

block[{T=0}=f1(k^2r(3d+kr)+3(d^2-k^2r)s-6ds^2+3s^3)/(6S^2);max1=flattening[Table[{DsMaxValue[F10{<=d[{T=0}=f1(k^2r(3d+kr)+3(d^2-k^2r)s-6ds^2+3s^3)/(6S^2);max1=Flatten[Table[{DsMaxValue[F10{<=d[{t=0}f1=(k^2r(3d+kr)+3(d^2-k^2r)s-6ds^2+3s^3)/(6s^2);max1=Abflachen[Tabelle[{dsMaxValue[{f10<=d[{t=0}f1=(k^2r(3d+kr)+3(d^2-k^2r)s-6ds^2+3s^3)/(6s^2);max1=Flatten[Table[{dsMaxValue[{f10<=d<= 1, s >= 2 d, 0 <= k <d, 0 <= r <= 1}, {k, r}]}, {d, 0, 1, .1}, {s, 0, 2, .1}], 1]; maxk1 = flattening[Table[{Dsk/load@Maximize[F10{<=d[Table[{Dsk/load@Maximize[F10{<=d[Tabelle[{dsk/Last@Maximize[{f10<=d[Table[{dsk/Last@Maximize[{f10<=d<= 1, s >= 2 d, 0 <= k <d, 0 <= r <= 1}, {k, r}]}, {d, 0, 1, .1}, {s, 0, 2, .1}], 1]; maxr1 = flattening[Table[{Dsr/load@Maximize[F10{<=d[Table[{Dsr/load@Maximize[F10{<=d[Tabelle[{dsr/Last@Maximize[{f10<=d[Table[{dsr/Last@Maximize[{f10<=d<= 1, s >= 2 d, 0 <= k <d, 0 <= r <= 1}, {k, r}]}, {d, 0, 1, .1}, {s, 0, 2, .1}], 1];]block[{T=0}f2=1/(6(-1+r)s^2)(d^3+k^3(-1+r(3+(-1+r)))+^3d2(k(1+r)-s)-3K^^2r2s+3(-1+r)s^3+3d(k^2(1+(-3+r)r)+2krs-2(-1+r)s^2));max2=flattening[Table[{DsMaxValue[F20{<=d[{T=0}f2=1/(6(-1+r)s^2)(d^3+k^3(-1+r(3+(-1+r)))+^3d2(k(1+r)-s)-3K^^2r2s+3(-1+r)s^3+3d(k^2(1+(-3+r)r)+2krs-2(-1+r)s^2));max2=Flatten[Table[{DsMaxValue[F20{<=d[{t=0}f2=1/(6(-1+r)s^2)(d^3+k^3(-1+r(3+(-1+r)r))+3d^2(k(-1+r)-s)-3k^2r^2s+3(-1+r)s^3+3d(k^2(1+(-3+r)r)+2krs-2(-1+r)s^2));max2=Abflachen[Tabelle[{dsMaxValue[{f20<=d[{t=0}f2=1/(6(-1+r)s^2)(d^3+k^3(-1+r(3+(-1+r)r))+3d^2(k(-1+r)-s)-3k^2r^2s+3(-1+r)s^3+3d(k^2(1+(-3+r)r)+2krs-2(-1+r)s^2));max2=Flatten[Table[{dsMaxValue[{f20<=d<= 1, s >= 2 d, d <= k <= s, 0 <= r <d / k}, {k, r}]}, {d, 0, 1, .1}, {s, 0, 2, .1}], 1]; maxk2 = flattening[Table[{Dsk/load@Maximize[F20{<=d[Table[{Dsk/load@Maximize[F20{<=d[Tabelle[{dsk/Last@Maximize[{f20<=d[Table[{dsk/Last@Maximize[{f20<=d<= 1, s >= 2 d, d <= k <= s, 0 <= r <d / k}, {k, r}]}, {d, 0, 1, .1}, {s, 0, 2, .1}], 1]; maxr2 = flattening[Table[{Dsr/load@Maximize[F20{<=d[Table[{Dsr/load@Maximize[F20{<=d[Tabelle[{dsr/Last@Maximize[{f20<=d[Table[{dsr/Last@Maximize[{f20<=d<= 1, s >= 2 d, d <= k <= s, 0 <= r <d / k}, {k, r}]}, {d, 0, 1, .1}, {s, 0, 2, .1}], 1];]block[{T}=0f3=(d^3+3d+k^2kr^3(-1+r)^2r+3RS^3+3DR(k^2(1+r)-2S^2))/(6RS^2)=max3flattening[Table[{DsMaxValue[F30{<=d[{T}=0f3=(d^3+3d+k^2kr^3(-1+r)^2r+3RS^3+3DR(k^2(1+r)-2S^2))/(6RS^2);max3=Flatten[Table[{DsMaxValue[F30{<=d[{t=0}f3=(d^3+3d^2kr+k^3(-1+r)^2r+3rs^3+3dr(k^2(-1+r)-2s^2))/(6rs^2);max3=Abflachen[Tabelle[{dsMaxValue[{f30<=d[{t=0}f3=(d^3+3d^2kr+k^3(-1+r)^2r+3rs^3+3dr(k^2(-1+r)-2s^2))/(6rs^2);max3=Flatten[Table[{dsMaxValue[{f30<=d<= 1, s >= 2 d, d <= k <= s, d / k <= r <= 1}, {k, r}]}, {d, 0, 1, .1}, {s, 0, 2, .1}], 1]; maxk3 = flattening[Table[{Dsk/load@Maximize[F30{<=d[Table[{Dsk/load@Maximize[F30{<=d[Tabelle[{dsk/Last@Maximize[{f30<=d[Table[{dsk/Last@Maximize[{f30<=d<= 1, s >= 2 d, d <= k <= s, d / k <= r <= 1}, {k, r}]}, {d, 0, 1, .1}, {s, 0, 2, .1}], 1]; maxr3 = flattening[Table[{Dsr/load@Maximize[F30{<=d[Table[{Dsr/load@Maximize[F30{<=d[Tabelle[{dsr/Last@Maximize[{f30<=d[Table[{dsr/Last@Maximize[{f30<=d<= 1, s >= 2 d, d <= k <= s, d / k <= r <= 1}, {k, r}]}, {d, 0, 1, .1}, {s, 0, 2, .1}], 1];] {ListPlot3D[max1, max2, max3, AxesLabel -> {"d", "s", "V"}], ListPlot3D[maxk1, maxk2, maxk3, PlotRange -> {0, 2}, AxesLabel -> {"d", "s", "k"}], ListPlot3D[maxr1, maxr2, maxr3, PlotRange -> {0, 1}, AxesLabel -> {"d", "s", "r"}]} 

(In the code you can simply bypass the meaning of $ t = 0 $.)

When this code is executed, a list of error messages will be displayed. Can someone help? Thanks in advance!

Draw – Define the chart topic as a function of two parameters

I want to define a new one PlotTheme as a function of two variables {x, y}, How can I do that?
Here is my attempt:

Themes`AddThemeRules["mysty", 
LabelStyle -> {FontSize -> 18, Black, 
FontFamily -> "Times New Roman"}, 
FrameStyle -> Directive[{Black, Thickness[x]}], Frame -> True,
FrameTicksStyle -> {{directive[Black, Thickness[y]].
guideline[White, Thickness[y]]}, {Guideline[Black, Thickness[y]].
guideline[White, Thickness[y]]}}];
With[{x = 0.005, y = 0.007}, 
Plot[{Sin[z]cos[z]}, {z, 0, 7}, PlotTheme -> "mysty"]]

Create a stacked GitHub bar chart

Here is a picture of what I mean by a stacked bar chart:

Question: For the following GitHub repos:

  1. Organization1 / Repo1 (branch: branch1)
  2. Organization2 / Repo2 (branch: branch2)

How can I create a stacked bar chart of commits per day? So, if we had 2 commits in the first repo on July 8, and 3 commits in the second repo, the bar graph should show 5 commits on that date, which are distributed between the two repos.

It would also be nice if we could limit this to a single contributor (such as username) contributor1).

Use only the last X values ​​in a chart in Google Sheets

I use a Raspberry Pi to automatically measure the temperature and humidity in my room and attach that data to a Google Sheet every few minutes. I use different methods to show the current data (ads look good on it), but I have not found a way to recommend my line chart to use only the values ​​of the last three days.

Is there a good way to do this?

Time Sorting Chart for Google Sheets

I have a mail chimp data export to Google Sheets and want to create some charts that show the best time of day / best day of the week based on my data for our mail outs versus opening rate (%). I have all the days and the exact times, but can not find a way for my entire life to set up an axis for 24 hours and compare the percentage of openings placed within the 24-hour period, or the 7 days of the week and have the bars with the highest average open every day etc. Is that possible?

Caption – No difference between TraditionalForm and StandardForm in chart captions

TraditionalForm does not seem to work properly in Mathematica 11.3 graph, The following MWE

Edges = {1 [UndirectedEdge] 2};
GraphicsRow[{Graph[edges, VertexLabels -> [Rho].
VertexLabelStyle -> directive["TraditionalForm", 30]].
graph[edges, VertexLabels -> [Rho].
VertexLabelStyle -> directive["DisplayForm", 30]]}]

Generates the following issue

(Left) TraditionalForm, (right) StandardForm

But if I do it

TraditionalForm[[Rho]]

The character output is the one in the left image of the character description.

Then I started to wonder if it is possible to use characters in TraditionalForm Within graphs?