How to evaluate triple integral $$iiintlimits_Efrac{yzdxdydz}{x^2+y^2+z^2}$$

when $E$ is bounded by $x^2+y^2+z^2-x=0$?

I know that spherical coordinates mean that $$x=rsinthetacosvarphi,quad y=rsinthetasinvarphi,quad z=rcostheta$$

and this function in spherical coordinates is

begin{align*}

&iiintlimits_Efrac{yzdxdydz}{x^2+y^2+z^2} = iiintlimits_Efrac{r^2sintheta}{r^2sin^2thetacos^2varphi + r^2sin^2thetasin^2varphi + r^2cos^2theta}drdtheta dvarphi = \ &iiintlimits_Efrac{r^2sintheta}{r^2(sin^2thetacos^2varphi + sin^2thetasin^2varphi + cos^2theta)}drdtheta dvarphi = iiintlimits_Efrac{sintheta}{sin^2thetacos^2varphi + sin^2thetasin^2varphi + cos^2theta}drdtheta dvarphi

end{align*}

but I don’t know how to write $E$ as set and convert it to spherical coordinates, and also what happens with this function after conversion. Triple integrals is now topic for me and I have never used spherical coordinates before, so I would be grateful if anyone can help me with this.