In Katz’ paper Antwerp III, section 1.4 (Ka-14) one reads (we assume $n geq 3$ integer):

”The scheme $overline{M}_n – M_n$” over $mathbb{Z}(1/n)$ is finite and étale, and over $mathbb{Z}(1/n,zeta_n)$, it is a disjoint union of sections, called the cusps of $overline{M}_n$,”

I would be interested to see a detailed proof of the next part of that sentence, namely:

“which in a natural way are the set of isomorphism classes of level $n$ structures on the Tate curve $text{Tate}(q^n)$ viewed over $mathbb{Z}((q)) otimes_{mathbb{Z}} mathbb{Z}(1/n,zeta_n)$.”

**What I did:** I tried to extract the relevant information in Deligne-Rapoport and Katz-Mazur but in each case, certainly for a lack of understanding on my part, I’m not able to establish this correspondence explicitly. I found the discussion of formal completion at (the divisor of) cusps well explained in both references (something which is also addressed in Katz’ paper Antwerp III on page Ka-14), but I couldn’t connect the dots for the natural correspondence above and thus my question. Feel free to ask if you need more details.

**In Deligne-Rapoport?**

I first looked in Deligne-Rapoport (DR), which was in Antwerp II (and so the natural place to look for the arguments):

http://smtp.math.uni-bonn.de/ag/alggeom/preprints/Lesschemas.pdf

The motivating example on pages DeRa-7 and beginning of page 8 hint to that fact. But it seems that’s not the point of view (DR) take.

“Dans le texte, nous précisons cette interprétation modulaire de l’ensemble des points à l’infini de $mathcal{H}/Gamma(n)$ en une interprétation modulaire de la courbe projective compactifiée $overline{mathcal{H}/Gamma(n)}$ de $mathcal{H}/Gamma(n)$.”

Here: $mathcal{H} = { z in mathbb{C} mid Im(z) > 0 }$ is the upper half-plane.

On page DeRa-10 they do say that $M_n$ can be defined as the normalization, in the field of functions of $M_n^0(1/n)$, of the projective $j$-line over $mathbb{Z}(zeta_n)$. (That’s what Katz and Mazur do in their book on Chapter 8.) (DR) say among other things that they prove that there exists a finite family of points $mathbb{Z}(zeta_n)$-points $f_i : M_n to Spec(mathbb{Z}(zeta_n))$ such that the sections $f_i$ are disjoint (incongruent modulo any prime ideal of $mathbb{Z}(zeta_n)$) and that $M_n^0$ is the complement in $M_n$ of the union of the ”sections at infinity” $f_i$.

The Tate curve is only constructed in chapter VII of (DR). But I don’t find it immediate to deduce initial assertion by Katz in Antwerp III.

In Chapter VII (sections 1 and mostly 2 seem relevant to my question), DeRa-156, (1.16.4) gives me the description of the level $r$-structure of the Tate curve with $r$ edges over $mathbb{Z}((q^{1/r}))$.

Moreover, $text{Tate}(q)$ over $mathbb{Z}((q))$ induces a morphism $tau: Spec(mathbb{Z}((q))) to mathcal{M}_1$ which identifies $mathbb{Z}((q))$ with the formal completion of $mathcal{M}_1$ along the section at infinity $f_1$ (Theorem 2.1).

The Néron $n$-gon $C$ over $mathbb{Z}(zeta_n)$ equipped with its structure of generalized elliptic curve and the natural isomorphism $C(n) = mu_n times mathbb{Z}/nmathbb{Z}$ defines a section at infinity $f_n : Spec(mathbb{Z}(zeta_n)) to mathcal{M}_n$. We also obtain an isomorphism between the $n$-torsion of the Tate curve with $n$ edges and $mu_n times mathbb{Z}/n mathbb{Z}$ and then we geta morphism $Spec(mathbb{Z}(zeta_n)((q^{1/n}))) to mathcal{M}_n$. This latter morphism identifies $mathbb{Z}(zeta_n)((q^{1/n}))$ with the formal completion of $mathcal{M}_n$ along the section at infinity $f_n$.

Finally, Corollary 2.5 says that the completion of $mathcal{M}_n$ along infinity is sum of copies of $Spec(mathbb{Z}(zeta_n)((q^{1/n}))$ indexed by $SL_2(mathbb{Z}/nmathbb{Z})/pm U$, where $U$ is the group of upper unipotent matrices.

It feels like the desired correspondence is there but I couldn’t extract it explicitly.

**In Katz-Mazur?**

I turned to the book of Katz and Mazur (see https://web.math.princeton.edu/~nmk/katz-mazur.djvu). Again, I feel I’m getting closed, but I’m not sure how to tie up the loose ends.

The point of view in (KM) doesn’t deal (explicitly?) with stacks (as in (DR)). They consider the moduli problem (contravariant functor)

$$

(Gamma(N)) : textbf{Ell} to textbf{Set}

$$

which classifies elliptic curves (proper smooth curves $pi : E to S$ with geometrically connected fibers all of genus one, given with a section $0$, and here $S$ is any scheme.) equipped with a $Gamma(N)$-structure (KM 3.1, page 98).

This functor is relatively representable and flat over $textbf{Ell}$ of constant rank $geq 1$, and regular of dimension $2$. As a functor with source $textbf{Ell}/mathbb{Z}(1/N)$ it is étale on the source. (First Main Theorem 5.1.1, page 129).

When $N geq 3$, $(Gamma(N))$ is in fact representable by some universal elliptic curve $E_text{univ}/Y(N)$, where $Y(N)$ is a smooth affine curve (We have a rigidity.) (See (KM) Cor 2.7.2, 4.7.0 and 4.7.1)

Following (KM 8.6.3 and 8.6.8) we normalize $Y(N)$ near infinity to obtain $X(N)$ (we obtain a smooth proper curve over $mathbb{Z}(1/N)$ which is the normalization of the projective $j$-line in $Y(N)$).

The Tate curve $text{Tate}(q)$ itself represents an appropriate moduli problem $mathcal{S}$. Applying corollary 8.4.4 (p.235) to this and to the moduli problem $(Gamma(N))$ over an excellent noetherian regular ring $R$, we obtain an isomorphim of $R((q))$-schemes

$$

left( (Gamma(N))_{text{Tate}(q)/R((q))} right)/ pm 1 xrightarrow{simeq} Y(N)_{R((q))}

$$

where $Aut(text{Tate}(q)/R((q))) = pm 1$ (see Proposition 8.11.7).

Moreover, the formal completion of $X(N)$ along the (divisor of) cusps $X(N) – Y(N)$, which is a finite $R((q))$-scheme, is the normalization of $R((q))$ in the finite normal $R((q))$-scheme $left( (Gamma(N))_{text{Tate}(q)/R((q))} right)/ pm 1 $.

Finally, we have

**Theorem 10.8.2**

There is a canonical isomorphism of $mathbb{Z}(zeta_N)((q))$-schemes

$(Gamma(N))_{text{Tate}(q)/mathbb{Z}(zeta_N)((q))} simeq coprod_{text{Hom Surj }((mathbb{Z}/Nmathbb{Z})^2,mathbb{Z}/Nmathbb{Z})} Spec(mathbb{Z}(zeta_N)((q^{1/N})))$

and

**Theorem 10.9.1**

(1) $text{Cusps}(X(N))$ is the disjoint union of $mid text{Hom Surj }((mathbb{Z}/Nmathbb{Z})^2,mathbb{Z}/Nmathbb{Z}) mid$ sections of $X(N)$ over $mathbb{Z}(zeta_N)$.

(2) There exists an open neighborhood $V$ of the cusps $text{Cusps}((Gamma(N))) subset V subset X(N)$ which is smooth over $mathbb{Z}(zeta_N)$.

(3) The formal completion of $X(N)$ along its cusps is the $mathbb{Z}(zeta_N)$-formal scheme

$coprod_{text{Hom Surj }((mathbb{Z}/Nmathbb{Z})^2,mathbb{Z}/Nmathbb{Z})/pm 1} Spfleft( mathbb{Z}(zeta_N)((q^{1/N})) right)$.