python – Como exportar coluna do Pandas na forma de lista após usar expressões regulares?

Preciso exportar uma coluna do Pandas na forma de lista após fazer tratamentos com expressões regulares. Não estou conseguindo exportar na forma de lista, apenas de string, mesmo usando to_list().
Vou exemplificar com um dos dados. Os dados iniciais estão na forma de listas, sendo uma lista por linha. Assim:

(('então', 'ADV'), ('he', 'N'), ('he', 'N'), ('o', 'ART'), ('negócio', 'N'), ('não', 'ADV'), ('é', 'V'), ('não', 'ADV'), ('não', 'ADV'), ('é', 'V'), ('seguinte', 'N'), ('no', 'PREP'), ('norte', 'ADJ'))

Como expressões regulares demandam string, uso o “x” do lambda – via apply, para transformar em string:

df('utterances_POS') = df('utterances_POS').apply(lambda x: re.sub(r"(?<='na',s')w+|(?<='no',s')w+", 'PREP', str(x), flags = re.IGNORECASE)) df('utterances_POS') = df('utterances_POS').apply(lambda x: re.sub(r"(?<='da',s')w+|(?<='do',s')w+", 'PREP', str(x), flags = re.IGNORECASE))

Após fazer isso, no entanto, não consigo transformar em lista novamente! Tentei:

lista = df('utterances_POS').apply(lambda x: eval(str(x))).tolist()

Mas o programa diz “invalid syntax”.

Se eu tento exportar na forma de lista sem o eval, com apenas to_list() aplicado à coluna, consigo uma lista enorme contendo strings (uma string enorme por linha):

"(('então', 'ADV'), ('he', 'N'), ('he', 'N'), ('o', 'ART'), ('negócio', 'N'))"

Mas o que eu quero é uma lista por linha, com tuplas dentro, e a string dentro das tuplas:

(('então', 'ADV'), ('he', 'N'), ('he', 'N'), ('o', 'ART'), ('negócio', 'N'))

Alguém poderia me ajudar?

Operadores AND, XOR, OR em expressões regulares [fechada]

Estou querendo fazer um WebScrapping ou Crawler não sei o nome certo que se da, que vai até o site do planalto, pega o texto de uma lei e o separa artigo por artigo, inciso por inciso, alinea por alinea e assim vai.
Eu consegui montar o código que cópia o texto da lei usando Curl e já tenho o texto todo dentro da minha string.
O meu problema e que quero estruturar o texto, conforme os padrões que eu tenho(existe um padrão para artigo, um padrão de texto para inciso, um padrão de texto para as alienas e por assim vai).
Eu gostaria de saber se alguém consegue me dar uma ideia de como fazer isto.

Obs.: Todo o código está em PHP.

regex – Como filtrar uma tag html e seu conteúdo com expressões regulares na Shell Bash?

Tomando como base o texto abaixo, me explique nesta pergunta, como manter a saída de texto da primeira coluna da tag span, que condiz com o texto do segundo span.

<span class="CVA68e qXLe6d">Colcha Casal e ... - TorraTudo</span>  <span class="qXLe6d dXDvrc">  <span class="fYyStc">www.torratudo.com &#8250; cama</span>  </span>
<span class="CVA68e qXLe6d">Colcha Solteiro e ... - TorraTudo</span>  <span class="qXLe6d dXDvrc">  <span class="fYyStc">www.torratudo.com &#8250; cama</span>  </span>
<span class="CVA68e qXLe6d">Roupão de banho ... - TorraTudo</span>  <span class="qXLe6d dXDvrc">  <span class="fYyStc">www.torratudo.com &#8250; banho</span>  </span>
<span class="CVA68e qXLe6d">Caminho de mesa ... - TorraTudo</span>  <span class="qXLe6d dXDvrc">  <span class="fYyStc">www.torratudo.com &#8250; mesa</span>  </span>
<span class="CVA68e qXLe6d">Cortina para quarto ... - TorraTudo</span>  <span class="qXLe6d dXDvrc">  <span class="fYyStc">www.torratudo.com &#8250; cama</span>  </span>
<span class="CVA68e qXLe6d">Travesseiro de pena com ... - TorraTudo</span>  <span class="qXLe6d dXDvrc">  <span class="fYyStc">www.torratudo.com &#8250; cama</span>  </span>
<span class="CVA68e qXLe6d">Fronha de Solteiro em ... - TorraTudo</span>  <span class="qXLe6d dXDvrc">  <span class="fYyStc">www.torratudo.com &#8250; cama</span>  </span>
<span class="CVA68e qXLe6d">Lençol 70% algodão e ... - TorraTudo</span>  <span class="qXLe6d dXDvrc">  <span class="fYyStc">www.torratudo.com &#8250; cama</span>  </span>
<span class="CVA68e qXLe6d">Pano de prato pintado a ... - TorraTudo</span>  <span class="qXLe6d dXDvrc">  <span class="fYyStc">www.torratudo.com &#8250; mesa</span>  </span>
<span class="CVA68e qXLe6d">Coberto dupla face colo... - TorraTudo</span>  <span class="qXLe6d dXDvrc">  <span class="fYyStc">www.torratudo.com &#8250; cama</span>  </span>
<span class="CVA68e qXLe6d">Toalha de rosto felpudo ... - TorraTudo</span>  <span class="qXLe6d dXDvrc">  <span class="fYyStc">www.torratudo.com &#8250; banho</span>  </span>

Lembrando que o texto acima possui vários parágrafos e, o que é determinante nessa questão é conseguir pegar os títulos do primeiro span através da filtragem pela #hashtag &#8250; cama/mesa/banho do terceiro/último span.

O que tentei .. o sed juntamente com o grep em sua forma simples de uso:

sed 's/"/n/g' /tmp/default.htm | grep "TorraTudo"

Significado da opção ” n:
" – Filtrar apóstrofos e..
n – Quebrar linha por linha a cada apóstrofo

  • Isto me dá uma lista, do qual eu posso continuar o manuseio a saída fica como:
>Colcha Casal e ... - TorraTudo</span>  <span class=
>Colcha Solteiro e ... - TorraTudo</span>  <span class=
>Roupão de banho ... - TorraTudo</span>  <span class=
>Caminho de mesa ... - TorraTudo</span>  <span class=
>Cortina para quarto ... - TorraTudo</span>  <span class=
>Os Simpsons em Português - YouTube</span>  <span class=
>Travesseiro de pena com ... - TorraTudo</span>  <span class=
>Fronha de Solteiro em ... - TorraTudo</span>  <span class=
>Lençol 70% algodão e ... - TorraTudo</span>  <span class=
>Pano de prato pintado a ... - TorraTudo</span>  <span class=
>Coberto dupla face colo... - TorraTudo</span>  <span class=
>Toalha de rosto felpudo ... - TorraTudo</span>  <span class=

Mas veja que não há distinção entre Cama/Mesa/Banho

E o que preciso e separar cada título a sua categoria.

Até tentei algo como: sed 's/"/n/g' /tmp/default.htm | grep "TorraTudo(^.*$) &#8250; watch"

Entre várias tentativas inúteis que fiz fora essas mostrada aqui, decidi pergunta pra quem tem mais experiência neste assunto (Expressão Regular).

r – Como plotar expressões dentro de facet_grid()?

Prezad(x)s:

Estou com dificuldades em plotar duas expressões distintas (expressão 1: "RN (MJ m"^2~"d"^-1~")", expressão 2: "ET"(0)~~" (mm"^-1*" m"^2*" )") dentro de: ggplot()+facet_grid(labeller = label_bquote(), conforme o script abaixo, São apresentados apenas a primeira expressão (Figura 1). Eu gostaria que apresentasse um com RN e outra para ET0.

Na oportunidade, caso alguém saiba, como eu poderia, plotar essas expressões dentro de labs(), para que cada uma aparecesse em seus respectivos eixos de grid, também resolveria meu problema (sem usar ggarrange(), plot_grid(), pois necessito que o eixo x, esteja fixo).

Figura 1 – Exemplo

inserir a descrição da imagem aqui

Script do gráfico:

ggplot(exe1,aes(x=Time,y=value))+
  facet_grid(variable~.,scales="free_y",labeller = label_bquote(RN=="RN (MJ m"^2~"d"^-1~")",ET0=="ET"(0)~~" (mm"^-1*" m"^2*" )"))+
  geom_line(aes(linetype=variable,color=variable))+labs(y=c(expression("RN (MJ m"^2~"d"^-1~")"),expression("ET"(0)~~" (mm"^-1*" m"^2*" )")))

dados do exemplo:

exe1<-structure(list(Time = structure(c(1607644800, 1607644800, 1607680800, 
1607680800, 1607682600, 1607682600, 1607684400, 1607684400, 1607686200, 
1607686200, 1607688000, 1607688000, 1607689800, 1607689800, 1607691600, 
1607691600, 1607693400, 1607693400, 1607695200, 1607695200, 1607697000, 
1607697000, 1607698800, 1607698800, 1607700600, 1607700600, 1607702400, 
1607702400, 1607704200, 1607704200, 1607706000, 1607706000, 1607707800, 
1607707800, 1607709600, 1607709600, 1607711400, 1607711400, 1607713200, 
1607713200, 1607715000, 1607715000, 1607648400, 1607648400, 1607650200, 
1607650200, 1607716800, 1607716800, 1607718600, 1607718600, 1607720400, 
1607720400, 1607722200, 1607722200, 1607724000, 1607724000, 1607725800, 
1607725800, 1607727600, 1607727600, 1607729400, 1607729400, 1607652000, 
1607652000, 1607653800, 1607653800, 1607646600, 1607646600, 1607655600, 
1607655600, 1607657400, 1607657400, 1607659200, 1607659200, 1607661000, 
1607661000, 1607662800, 1607662800, 1607664600, 1607664600, 1607666400, 
1607666400, 1607668200, 1607668200, 1607670000, 1607670000, 1607671800, 
1607671800, 1607673600, 1607673600, 1607675400, 1607675400, 1607677200, 
1607677200, 1607679000, 1607679000, 1607731200, 1607731200, 1607767200, 
1607767200, 1607769000, 1607769000, 1607770800, 1607770800, 1607772600, 
1607772600, 1607774400, 1607774400, 1607776200, 1607776200, 1607778000, 
1607778000, 1607779800, 1607779800, 1607781600, 1607781600, 1607783400, 
1607783400, 1607785200, 1607785200, 1607787000, 1607787000, 1607788800, 
1607788800, 1607790600, 1607790600, 1607792400, 1607792400, 1607794200, 
1607794200, 1607796000, 1607796000, 1607797800, 1607797800, 1607799600, 
1607799600, 1607801400, 1607801400, 1607734800, 1607734800, 1607736600, 
1607736600, 1607803200, 1607803200, 1607805000, 1607805000, 1607806800, 
1607806800, 1607808600, 1607808600, 1607810400, 1607810400, 1607812200, 
1607812200, 1607814000, 1607814000, 1607815800, 1607815800, 1607738400, 
1607738400, 1607740200, 1607740200, 1607733000, 1607733000, 1607742000, 
1607742000, 1607743800, 1607743800, 1607745600, 1607745600, 1607747400, 
1607747400, 1607749200, 1607749200, 1607751000, 1607751000, 1607752800, 
1607752800, 1607754600, 1607754600, 1607756400, 1607756400, 1607758200, 
1607758200, 1607760000, 1607760000, 1607761800, 1607761800, 1607763600, 
1607763600, 1607765400, 1607765400, 1607817600, 1607817600, 1607853600, 
1607853600, 1607855400, 1607855400, 1607857200, 1607857200, 1607859000, 
1607859000, 1607860800, 1607860800, 1607862600, 1607862600, 1607864400, 
1607864400, 1607866200, 1607866200, 1607868000, 1607868000, 1607869800, 
1607869800, 1607871600, 1607871600, 1607873400, 1607873400, 1607875200, 
1607875200, 1607877000, 1607877000, 1607878800, 1607878800, 1607880600, 
1607880600, 1607882400, 1607882400, 1607884200, 1607884200, 1607886000, 
1607886000, 1607887800, 1607887800, 1607821200, 1607821200, 1607823000, 
1607823000, 1607889600, 1607889600, 1607891400, 1607891400, 1607893200, 
1607893200, 1607895000, 1607895000, 1607896800, 1607896800, 1607898600, 
1607898600, 1607900400, 1607900400, 1607902200, 1607902200, 1607824800, 
1607824800, 1607826600, 1607826600, 1607819400, 1607819400, 1607828400, 
1607828400, 1607830200, 1607830200, 1607832000, 1607832000, 1607833800, 
1607833800, 1607835600, 1607835600, 1607837400, 1607837400, 1607839200, 
1607839200, 1607841000, 1607841000, 1607842800, 1607842800, 1607844600, 
1607844600, 1607846400, 1607846400, 1607848200, 1607848200, 1607850000, 
1607850000, 1607851800, 1607851800, 1607904000, 1607904000, 1607940000, 
1607940000, 1607941800, 1607941800, 1607943600, 1607943600, 1607945400, 
1607945400, 1607947200, 1607947200, 1607949000, 1607949000, 1607950800, 
1607950800, 1607952600, 1607952600, 1607954400, 1607954400, 1607956200, 
1607956200, 1607958000, 1607958000, 1607959800, 1607959800, 1607961600, 
1607961600, 1607963400, 1607963400, 1607965200, 1607965200, 1607967000, 
1607967000, 1607968800, 1607968800, 1607970600, 1607970600, 1607972400, 
1607972400, 1607974200, 1607974200, 1607907600, 1607907600, 1607909400, 
1607909400, 1607976000, 1607976000, 1607977800, 1607977800, 1607979600, 
1607979600, 1607981400, 1607981400, 1607983200, 1607983200, 1607985000, 
1607985000, 1607986800, 1607986800, 1607988600, 1607988600, 1607911200, 
1607911200, 1607913000, 1607913000, 1607905800, 1607905800, 1607914800, 
1607914800, 1607916600, 1607916600, 1607918400, 1607918400, 1607920200, 
1607920200, 1607922000, 1607922000, 1607923800, 1607923800, 1607925600, 
1607925600, 1607927400, 1607927400, 1607929200, 1607929200, 1607931000, 
1607931000, 1607932800, 1607932800, 1607934600, 1607934600, 1607936400, 
1607936400, 1607938200, 1607938200, 1607990400, 1607990400, 1608026400, 
1608026400, 1608028200, 1608028200, 1608030000, 1608030000, 1608031800, 
1608031800, 1608033600, 1608033600, 1608035400, 1608035400, 1608037200, 
1608037200, 1608039000, 1608039000, 1608040800, 1608040800, 1608042600, 
1608042600, 1608044400, 1608044400, 1608046200, 1608046200, 1608048000, 
1608048000, 1608049800, 1608049800, 1608051600, 1608051600, 1608053400, 
1608053400, 1608055200, 1608055200, 1608057000, 1608057000, 1608058800, 
1608058800, 1608060600, 1608060600, 1607994000, 1607994000, 1607995800, 
1607995800, 1608062400, 1608062400, 1608064200, 1608064200, 1608066000, 
1608066000, 1608067800, 1608067800, 1608069600, 1608069600, 1608071400, 
1608071400, 1608073200, 1608073200, 1608075000, 1608075000, 1607997600, 
1607997600, 1607999400, 1607999400, 1607992200, 1607992200, 1608001200, 
1608001200, 1608003000, 1608003000, 1608004800, 1608004800, 1608006600, 
1608006600, 1608008400, 1608008400, 1608010200, 1608010200, 1608012000, 
1608012000, 1608013800, 1608013800, 1608015600, 1608015600, 1608017400, 
1608017400, 1608019200, 1608019200, 1608021000, 1608021000, 1608022800, 
1608022800, 1608024600, 1608024600), tzone = "GMT", class = c("POSIXct", 
"POSIXt")), variable = c("ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", "ET0", "RN", 
"ET0", "RN", "ET0", "RN"), value = c(0.254, 0.604, 17.426, 44.76, 
14.844, 37.757, 9.145, 22.915, 12.865, 32.331, 12.826, 32.556, 
13.371, 34.922, 12.459, 32.121, 12.222, 31.06, 9.636, 25.364, 
6.111, 15.646, 5.745, 15.477, 4.858, 12.902, 2.54, 6.393, 3.099, 
7.652, 3.149, 8.271, 1.122, 2.494, 0.506, 0.777, 0.351, 0.471, 
0.292, 0.377, 0.268, 0.372, 0.304, 0.798, 0.219, 0.481, 0.158, 
0.003, 0.433, 1.116, 0.493, 1.327, 0.206, 0.244, 0.179, 0.084, 
0.291, 0.525, 0.247, 0.437, 0.323, 0.789, 0.237, 0.53, 0.306, 
0.802, 0.305, 0.794, 0.312, 0.869, 0.215, 0.476, 0.291, 0.775, 
0.361, 1.099, 0.482, 1.556, 0.864, 2.754, 1.656, 4.929, 5.356, 
16.1, 4.216, 10.584, 7.469, 18.89, 6.269, 17.191, 7.824, 20.66, 
10.684, 27.327, 9.616, 25.348, 0.344, 0.827, 12.969, 32.853, 
14.133, 35.666, 17.189, 44.22, 24.602, 64.747, 25.188, 66.111, 
25.298, 66.703, 19.859, 53.29, 10.327, 27.698, 5.311, 13.6, 4.516, 
11.725, 6.491, 17.216, 11.335, 31.197, 6.906, 19.458, 2.808, 
7.262, 1.913, 4.613, 0.939, 1.622, 0.728, 1.174, 0.354, 0, 0.272, 
-0.117, 0.447, 0.642, 0.323, 0.718, 0.181, 0.177, 0.447, 0.734, 
0.354, 0.497, 0.197, -0.05, 0.329, 0.534, 0.449, 1.051, 0.281, 
0.472, 0.424, 1.053, 0.313, 0.668, 0.165, 0.098, 0.149, 0.08, 
0.384, 0.974, 0.138, 0.085, 0.14, 0.125, 0.411, 1.202, 0.331, 
0.916, 0.461, 1.375, 0.857, 2.427, 1.882, 5.515, 2.603, 7.339, 
3.179, 9.166, 6.689, 17.094, 11.37, 28.085, 9.604, 22.629, 7.732, 
18.481, 11.651, 29.369, 0.355, 0.83, 8.559, 20.714, 12.456, 30.017, 
15.535, 38.772, 11.339, 28.859, 12.111, 31.176, 15.778, 41.89, 
12.975, 34.4, 13.863, 37.399, 12.668, 34.713, 8.911, 24.444, 
6.869, 18.299, 5.49, 14.89, 3.94, 10.258, 3.038, 7.828, 2.042, 
4.867, 1.22, 2.414, 0.557, 0.35, 0.418, 0.036, 0.282, -0.276, 
0.121, -0.694, 0.375, 0.899, 0.243, 0.38, 0.206, -0.291, 0.063, 
-0.849, 0.066, -0.853, 0.091, -0.736, -0.009, -1.012, 0.038, 
-0.719, -0.036, -0.997, 0.05, -0.59, 0.285, 0.577, 0.326, 0.722, 
0.302, 0.612, 0.363, 0.905, 0.663, 2.003, 0.369, 0.933, 0.301, 
0.685, 0.796, 2.413, 0.966, 2.591, 1.635, 4.407, 4.466, 12.541, 
5.632, 14.173, 6.872, 16.84, 8.596, 20.846, 7.917, 19.086, 8.004, 
18.427, 9.217, 21.973, 0.016, -0.754, 13.159, 31.995, 11.743, 
27.81, 13.443, 33.017, 22.591, 60.104, 22.622, 60.934, 25.42, 
68.375, 24.238, 66.833, 17.473, 49.202, 11.954, 33.622, 9.176, 
25.413, 8.483, 23.186, 7.172, 19.58, 5.972, 16.061, 4.659, 11.99, 
3.329, 8.866, 1.716, 4.086, 0.496, 0.329, 0.068, -0.847, 0.294, 
0.187, 0.188, -0.183, 0.262, 0.257, 0.286, 0.359, 0.334, 0.46, 
0.343, 0.512, 0.185, -0.076, 0.414, 0.834, 0.309, 0.47, 0.182, 
0.023, 0.298, 0.465, 0.435, 0.989, 0.282, 0.406, 0.379, 0.769, 
-0.051, -0.964, 0.403, 0.919, 0.219, 0.304, 0.345, 0.813, 0.454, 
1.283, 0.429, 1.109, 0.614, 1.534, 1.08, 2.876, 4.076, 11.937, 
5.146, 13.145, 7.213, 17.548, 9.198, 21.347, 7.134, 14.881, 5.17, 
9.05, 6.278, 11.994, 0.616, 1.652, 9.144, 19.461, 10.841, 24.35, 
10.873, 24.582, 21.237, 55.214, 23.441, 62.242, 24.678, 66.54, 
24.555, 67.536, 23.108, 64.221, 20.406, 56.831, 16.27, 45.235, 
12.421, 34.655, 8.365, 23.526, 6.184, 16.819, 4.682, 12.486, 
3.225, 8.137, 1.427, 2.804, 0.578, 0.42, 0.558, 0.696, 0.425, 
0.452, 0.449, 0.596, 0.481, 1.259, 0.398, 0.984, 0.401, 0.51, 
0.312, 0.313, 0.425, 0.882, 0.348, 0.587, 0.396, 0.808, 0.337, 
0.622, 0.418, 0.977, 0.32, 0.643, 0.364, 0.898, 0.483, 1.421, 
0.413, 0.964, 0.384, 1.089, 0.462, 1.399, 0.357, 1.003, 0.478, 
1.503, 0.527, 1.56, 1.022, 3, 1.442, 4.317, 3.571, 10.457, 4.691, 
12.179, 6.775, 16.047, 8.763, 20.5, 7.361, 14.889, 3.531, 3.792, 
3.142, 2.564)), class = "data.frame", row.names = c(NA, -480L
))

expressões lambda – Como usar AWS SAM, rodando o “local start-api” com o COGNITO?

Estou em um projeto que utilizamos o SAM para implantar funções lambda, e nesse projeto utilizamos o AWS Cognito, porem, para rodar as lambdas localmente como uma API, com o SAM local start-api, ele não faz as validações do cognito e não popula as informações que preciso para validar o usuario.

Como posso fazer para utilizar o Cognito e rodar a API localmente na minha máquina passando pelo Cognito?

mysql – Como fazer um CASE WHEN para expressões nomeadas?

Bom dia, estou com problema em fazer um CASE WHEN de uma expressão nomeada. Eu tenho um select em que um dos parâmetros possui uma expressão nomeada.

Exemplo: ROUND(NFI.NOTAFISCALITEM_VALORMARGEMGERENCIAL, 2))MARGEM

Eu quero fazer uma verificação para essa expressão não retorne valores NULL, eu tentei fazer assim:

CASE WHEN (ROUND(NFI.NOTAFISCALITEM_VALORMARGEMGERENCIAL, 2)MARGEM) <> NULL THEN MARGEM ELSE 0 END

Mas dessa forma dá um erro dizendo o seguinte: SQL Error (102) (S0001): Incorrect syntax near ‘MARGEM’.

Alguém pode me ajudar?