I have 2 matrices 10×10 Dimension, Lets called them A and B.
I need to find matrices C (also 10×10) that will solve the next 2 equations:
- A = CBC(Transpose)
- B = CAC(Transpose)
How can I solve the issue?
matrices B –
((0.125+0.03125i,0,0,0,0,-0.0625,-0.0625,-0.03125i,0,0),
(0,0.0625,0,0,0,0,-0.0625,0,0,0),
(0,0,0.0625,0,0,0,0,-0.0625,0,0),
(0,0,0,0.125+0.03125i,0,0,-0.03125,0,-0.0625,-0.0625),
(0,0,0,0,0.0625,0,0,0,0,-0.0625),
(-0.0625,0,0,0,0,0.0625,0,0,0,0),
(-0.0625,-0.0625,0,-0.03125,0,0,0.125+0.03125i,0,0,0),
(-0.03125i,0,-0.0625,0,0,0,0,0.0625+0.03125i,0,0),
(0,0,0,-0.0625,0,0,0,0,0.0625,0),
(0,0,0,-0.0625,-0.0625,0,0,0,0,0.125))
matrices A –
((0.125+0.03125i,0,0,0,0,-0.0625,-0.0625,-0.03125,0,0),
(0,0.0625,0,0,0,0,-0.0625,0,0,0),
(0,0,0.0625,0,0,0,0,-0.0625,0,0),
(0,0,0,0.125+0.03125i,0,-0.03125i,0,-0.0625,-0.0625),
(0,0,0,0,0.0625,0,0,0,0,-0.0625),
(-0.0625,0,0,0,0,0.0625,0,0,0,0),
(-0.0625,-0.0625,0,-0.03125i,0,0,0.125+0.03125i,0,0,0),
(-0.03125,0,-0.0625,0,0,0,0,0.0625+0.03125i,0,0),
(0,0,0,-0.0625,0,0,0,0,0.0625,0),
(0,0,0,-0.0625,-0.0625,0,0,0,0,0.125))
They are symmetric and almost the same, with few changes.
Thanks!