godot – How to know if an overriden method calls its super method or not?

I’m not an expert in gdscript/godot, but here is what I presume:

_ready being a “core” function acts similarly as a constructor. Typically (at least with a language like c++), when a new object is created, the most-parent constructor is called first, to make sure that the object is constructed when the child classes’ constructor is called. The child not yet being constructed, if the function foo is called in the parent’s constructor, it’s the parent class’s foo that will be called.

Although we have similarities here, it’s not exactly the same.

_ready being a utility function, it will be called in order of the most parent’s to the most child by the framework, making sure that what’s “initialized” in the parents is initialized for the children–just like a constructor. However, unlike it would be the case in a constructor, all the objects having already been created, the “most overridden” function foo will hide all those that have been defined its ancestors.

Taking a look at the source code, there are multiple occurrences where a “child” _Ready() will call it’s base._Ready() as the first thing it does, so it appears this is consistent with the theory.


How to know if an overriden method calls its super method or not?

It’s probably safe to say that the “top ancestor” will have it’s _ready function called first, down to the “most overridden” _ready function. This behaviour will likely be the same for _init, although I have not found anything relevant about it.

For the other cases, the normal “hiding” will be done, and you’ll call the the “most overridden” foo function.

Can RabbitMQ persist message over public/subscribe method?

The short answer is yes: RabbitMQ supports persistence of messages. For this to happen the message must be persistent (set in the client) and the queue(s) that it is routed to must be Durable. See more here.

In your question you muddle two concepts, “subscribers down” and “message persistence”. If both A and B are only listening to one queue where one message was published it will be consumed by A. A will send an ack and the message will be removed from the queue = can’t be processed by B when B comes back to the broker. If you want both A and B to consume the message you can do this in multiple ways, for example by using a fanout exchange and then set single active consumer on the queues bound to the exchange, where A and B both gets a single queue each.

Ethnography as a software requirement elicitation method

Ethnography as a software requirement elicitation method – Software Engineering Stack Exchange

[LEAKED] POWERFUL Method to Make $5000 Monthly With Affiliate Marketing

I've been testing this method for some time. Really great guide which could be used in so many ways.
It has a huge potential and could be changed and used on your own.

Sales page:
https://buysellmethods.com/ads/affilioner-enterprise-edition-powerful-2018-method-to-5000month/

https://www.mediafire.com/file/q73vxk5fliiu8q0/Affilioner_-_Enterprise_Edition.pdf/file
or
https://www33.zippyshare.com/v/lVmRobzU/file.html…

[LEAKED] POWERFUL Method to Make $5000 Monthly With Affiliate Marketing

numerical integration – How to increase the precision (quadruple-precision or double precision) using Implicit Runge Kutta method

I’m trying to solve a system of 24 non-linear equations, using Implicit Runge Kutta method. Code is working very smoothly with MachinePrecision. But, I want higher precision as much as I can. First, I change all initial conditions upto 34 decimal places, for example, using EE = N(976/1000, 40) for energy = EE = 0.976, and same for other initial conditions.

I’m calculating initial data using FindRoot, where I’m using WorkingPrecision -> 39, then I have precision 34 of some variables, and some have 36, etc.
I don’t know how to convert all initial conditions in the same precision, therefore I used like this.

Is there any command that we can use that convert all initial data in the same precision?

Moreover, I want to solve this system with precision higher than the MachinePrecision. I have tried using precision AccuracyGoal -> 18, PrecisionGoal -> 18, etc or using WorkingPrecision -> 40, but code gives errors.

Can anyone please help me to solve the system with precision higher than the MachinePrecision or quadruple-precision .

I’m posting my code here

n = 4;
AA(r_) := (1 - (2 M)/r); M = 1;

 gtt(r_, (Theta)_) := -AA(r); grr(r_, (Theta)_) := 1/AA(r); 
g(Theta)(Theta)(r_, (Theta)_) := r^2; 
g(Phi)(Phi)(r_, (Theta)_) := r^2 Sin((Theta))^2;
gUtt(r_, (Theta)_) := 1/gtt(r, (Theta)); 
gUrr(r_, (Theta)_) := 1/grr(r, (Theta)); 
gU(Theta)(Theta)(r_, (Theta)_) := 1/g(Theta)(Theta)(r, (Theta));
 gU(Phi)(Phi)(r_, (Theta)_) := 1/g(Phi)(Phi)(r, (Theta)); 

glo = FullSimplify({ {gtt(r, (Theta)), 0, 0, 0}, {0, 
     grr(r, (Theta)), 0, 0}, {0, 0, g(Theta)(Theta)(r, (Theta)), 
     0}, {0, 0, 0, g(Phi)(Phi)(r, (Theta))}});
gup = Simplify(Inverse(glo)); 
dglo = Simplify(Det(glo)); 
crd = {t, r, (Theta), (Phi)}; 

Xup = {t((Tau)), r((Tau)), (Theta)((Tau)), (Phi)((Tau))};
Vup = {Vt, Vr, V(Theta), V(Phi)};(* v^(Mu) vector *)
Pup = {Pt((Tau)), Pr((Tau)), P(Theta)((Tau)), P(Phi)((Tau))};

Sup = {{Stt((Tau)), Str((Tau)), St(Theta)((Tau)), 
    St(Phi)((Tau))}, 
   {Srt((Tau)), Srr((Tau)), Sr(Theta)((Tau)), Sr(Phi)((Tau))},
   {S(Theta)t((Tau)), S(Theta)r((Tau)), S(Theta)(Theta)((Tau)),
     S(Theta)(Phi)((Tau))},
   {S(Phi)t((Tau)), S(Phi)r((Tau)), S(Phi)(Theta)((Tau)), 
    S(Phi)(Phi)((Tau))}};

christoffel = 
  Simplify(Table((1/2)*
     Sum((gup((i, s)))*(D(glo((s, k)), crd((j)) ) + 
         D(glo((s, j)), crd((k)) ) - D(glo((j, k)), crd((s)) )), {s, 
       1, n}), {i, 1, n}, {j, 1, n}, {k, 1, n}) 
   );


riemann = Simplify(
   Table( 
    D(christoffel((i, j, l)), crd((k)) ) - 
     D(christoffel((i, j, k)), crd((l)) ) + 
     Sum(christoffel((s, j, l)) christoffel((i, k, s)) - 
       christoffel((s, j, k)) christoffel((i, l, s)),
      {s, 1, n}), {i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}) );


loriemann = 
  Simplify(Table(
    Sum(glo((i, m))*riemann((m, j, k, l)), {m, 1, n}), {i, 1, n}, {j, 
     1, n}, {k, 1, n}, {l, 1, n}) );

 EOM1 = Table( D(Xup((a)), (Tau)) == Vup((a)) , {a, 1, n});


EOM2 = Table( 
   D(Pup((a)), (Tau)) + !(
*UnderoverscriptBox(((Sum)), (b = 1), (n))(
*UnderoverscriptBox(((Sum)), (c = 
         1), (n))christoffel((()(a, b, c)()))*
        Pup((()(b)()))*Vup((()(c)())))) == -(1/2) !(
*UnderoverscriptBox(((Sum)), (b = 1), (n))(
*UnderoverscriptBox(((Sum)), (c = 1), (n))(
*UnderoverscriptBox(((Sum)), (d = 1), (n))riemann((()(a, 
          b, c, d)()))*Vup((()(b)()))*
         Sup((()(c, d)()))))),
   {a, 1, n});

 EOM3 = Table( 
   D(Sup((a, b)), (Tau)) + !(
*UnderoverscriptBox(((Sum)), (c = 1), (n))(
*UnderoverscriptBox(((Sum)), (d = 
         1), (n))christoffel((()(a, c, d)()))*
        Sup((()(c, b)()))*Vup((()(d)())))) + !(
*UnderoverscriptBox(((Sum)), (c = 1), (n))(
*UnderoverscriptBox(((Sum)), (d = 
         1), (n))christoffel((()(b, c, d)()))*
        Sup((()(a, c)()))*Vup((()(d)())))) == 
    Pup((a))*Vup((b)) - Pup((b))*Vup((a)),
   {a, 1, n}, {b, 1, n});


 Wfactor = Simplify(4*(Mu)^2 + !(
*UnderoverscriptBox(((Sum)), (i = 1), (4))(
*UnderoverscriptBox(((Sum)), (j = 1), (4))(
*UnderoverscriptBox(((Sum)), (k = 1), (4))(
*UnderoverscriptBox(((Sum)), (l = 
          1), (4))((loriemann((()(i, j, k, 
           l)()))*((Sup((()(i, j)()))))* ((Sup((()(k, 
            l)())))))))))));

Wvec = Simplify(Table(2/((Mu)*Wfactor)*(!(
*UnderoverscriptBox(((Sum)), (i = 1), (4))(
*UnderoverscriptBox(((Sum)), (k = 1), (4))(
*UnderoverscriptBox(((Sum)), (m = 1), (4))(
*UnderoverscriptBox(((Sum)), (l = 1), (4))Sup((()(j, 
            i)()))*
           Pup((()(k)()))*((loriemann((()(i, k, l, 
             m)()))))*((Sup((()(l, m)()))))))))), {j, 
     1, n}));

 NN = 1/Sqrt(1 - !(
*UnderoverscriptBox(((Sum)), (i = 1), (4))(
*UnderoverscriptBox(((Sum)), (k = 
       1), (4))((glo((()(i, k)()))))*Wvec((()(i)()))*
      Wvec((()(k)())))));


{Vt, Vr, V(Theta), V(Phi)} = NN (Wvec + Pup);

EOM = Flatten(
   Join({EOM1, EOM2, EOM3} /. 
        r -> r((Tau)) /. (Theta) -> (Theta)((Tau)) /. 
      Derivative(1)(r((Tau)))((Tau)) -> Derivative(1)(r)((Tau)) /. 
     Derivative(1)((Theta)((Tau)))((Tau)) -> 
      Derivative(1)((Theta))((Tau))));

 
(**********************************************************************************************************************************)

S(Theta)(Phi)0 = (
 LL Cot((Theta)0))/r0^2; Sr(Theta)0 = -(p(Theta)0/
  r0); Sr(Phi)0 = -(1/
   r0) (-LL + p(Phi)0/Sin((Theta)0)^2); Str0 = -(1/(
   r0*pt0)) (p(Theta)0^2 + p(Phi)0^2/Sin((Theta)0)^2 - LL*p(Phi)0);
St(Theta)0 = 
 1/(r0*pt0)*(pr0*p(Theta)0 + (LL * p(Phi)0)/r0*
     Cot((Theta)0)); St(Phi)0 = -(1/(
   r0*pt0))*(LL*pr0 - (pr0*p(Phi)0)/
    Sin((Theta)0)^2 + (LL*p(Theta)0)/r0*Cot((Theta)0));

glo0 = Simplify(glo /. {r -> r0, (Theta) -> (Theta)0});
gup0 = Simplify(Inverse(glo0)); 

plo0 = {pt0, pr0, p(Theta)0, p(Phi)0};
Sup0 = {{0, Str0, St(Theta)0, St(Phi)0}, 
   {-Str0, 0, Sr(Theta)0, Sr(Phi)0},
   {-St(Theta)0, -Sr(Theta)0, 0, S(Theta)(Phi)0},
   {-St(Phi)0, -Sr(Phi)0, -S(Theta)(Phi)0, 0}};


F0 = Simplify((Mu)^2 + !(
*UnderoverscriptBox(((Sum)), (a = 1), (4))(
*UnderoverscriptBox(((Sum)), (b = 
        1), (4))((((gup0((()(a, 
          b)()))))*((plo0((()(a)()))))*((plo0((()(b)
())))))))));
F1 = EE + pt0 - 
   M/r0^2*(1/(
      r0*pt0)*(p(Theta)0^2 + p(Phi)0^2/Sin((Theta)0)^2 - 
        LL*p(Phi)0));
F2 = Simplify(SS^2 - 1/2*(!(
*UnderoverscriptBox(((Sum)), (a = 1), (4))(
*UnderoverscriptBox(((Sum)), (b = 1), (4))(
*UnderoverscriptBox(((Sum)), (c = 1), (4))(
*UnderoverscriptBox(((Sum)), (d = 
            1), (4))((glo0((()(a, b)()))*
            glo0((()(c, d)()))*Sup0((()(a, c)()))*
            Sup0((()(b, d)()))))))))));

pth = N(-((Mu)^2 + (gup0((1, 1)) )*(- EE)^2 + 
       gup0((2, 2))  * (0)^2 + (gup0((4, 4))  )* (LL)^2)/(gup0((3, 
      3))  ), 40);
p(Theta)GR = N(If(pth < 0, 1, Sqrt(pth)), 40);

GiveMePSpoints(SS_, r0_, (Theta)0_, EE_, LL_, konec_, color_) := (
   Clear(Str0, St(Theta)0, St(Phi)0, Sr(Theta)0, Sr(Phi)0, 
    S(Theta)(Phi)0, pt0, pr0, p(Theta)0, p(Phi)0);
   (Mu) = N(1, 40); pr0 = N(0, 40);
   
   {pt0, pr0, p(Theta)0, 
     p(Phi)0} = {pt0, pr0, p(Theta)0, p(Phi)0} /. 
     FindRoot({F0 == 0, F1 == 0, 
       F2 == 0}, {{pt0, -EE}, {p(Theta)0, p(Theta)GR}, {p(Phi)0, 
        LL}}, WorkingPrecision -> 39);
   
   
   S(Theta)(Phi)0 = (LL Cot((Theta)0))/r0^2; 
   Sr(Theta)0 = -(p(Theta)0/r0); 
   Sr(Phi)0 = -(1/r0) (-LL + p(Phi)0/Sin((Theta)0)^2); 
   Str0 = -(1/(
      r0*pt0)) (p(Theta)0^2 + p(Phi)0^2/Sin((Theta)0)^2 - 
       LL*p(Phi)0);
   St(Theta)0 = 
    1/(r0*pt0)*(pr0*p(Theta)0 + (LL * p(Phi)0)/r0*Cot((Theta)0)); 
   St(Phi)0 = -(1/(
      r0*pt0))*(LL*pr0 - (pr0*p(Phi)0)/
       Sin((Theta)0)^2 + (LL*p(Theta)0)/r0*Cot((Theta)0));
   
   INT1 = {t(0) == 0, 
     r(0) == r0, (Theta)(0) == (Theta)0, (Phi)(0) == 0};
   INT2 = {Pt(0) == gUtt(r0, (Theta)0) pt0, 
     Pr(0) == gUrr(r0, (Theta)0) pr0, 
     P(Theta)(0) == gU(Theta)(Theta)(r0, (Theta)0) p(Theta)0, 
     P(Phi)(0) == gU(Phi)(Phi)(r0, (Theta)0) p(Phi)0};
   INT3 = {{Stt(0) == 0, Str(0) == Str0, St(Theta)(0) == St(Theta)0,
       St(Phi)(0) == St(Phi)0}, 
     {Srt(0) == -Str0, Srr(0) == 0, Sr(Theta)(0) == Sr(Theta)0, 
      Sr(Phi)(0) == Sr(Phi)0},
     {S(Theta)t(0) == -St(Theta)0, S(Theta)r(0) == -Sr(Theta)0, 
      S(Theta)(Theta)(0) == 0, 
      S(Theta)(Phi)(0) == S(Theta)(Phi)0},
     {S(Phi)t(0) == -St(Phi)0, S(Phi)r(0) == -Sr(Phi)0, 
      S(Phi)(Theta)(0) == -S(Theta)(Phi)0, S(Phi)(Phi)(0) == 0}};
   
   INT = Flatten(Join({INT1, INT2, INT3}));
   
   SetSystemOptions(
    "NDSolveOptions" -> "DefaultSolveTimeConstraint" -> 100.`);
   
   data = 
    Reap(NDSolve(
      Flatten(Join({EOM, INT})), {t, r, (Theta), (Phi), Pt, Pr, 
       P(Theta), P(Phi), Stt, Str, St(Theta), St(Phi), Srt, Srr, 
       Sr(Theta), Sr(Phi),
       S(Theta)t, S(Theta)r, S(Theta)(Theta), S(Theta)(Phi), 
       S(Phi)t, S(Phi)r, S(Phi)(Theta), S(Phi)(Phi)}, {(Tau), 
       0, konec}, 
      StartingStepSize -> 
       0.1, {Method -> {"EventLocator", 
         "Event" -> (Theta)((Tau)) - Pi/2, 
         "EventAction" :> Sow({r((Tau)), Pr((Tau))}), 
         "Method" -> {"FixedStep", 
           "Method" -> {"ImplicitRungeKutta", "DifferenceOrder" -> 10,
              "ImplicitSolver" -> {"Newton", 
               AccuracyGoal -> MachinePrecision, 
               PrecisionGoal -> MachinePrecision, 
               "IterationSafetyFactor" -> 1}}}}}));
   
   psdata = Take(data((-1, 1)));
   ListPlot(psdata, PlotStyle -> {{PointSize(0.003), color}}, 
    Frame -> True, Axes -> False, BaseStyle -> 15, ImageSize -> 350, 
    AspectRatio -> 1, PlotRange -> range)
   
   
   );






(Theta)0 = 
 N(Pi/2, 40); r0 = 
4.2521489655172413793103448275862068965517241379310344827585`40.;
EE = N(976/1000, 40); LL = N(38/10, 40); SS = N(10^-4, 40);
konec = 7 10^5; range = {{4.25213, 4.25218}, {-15 10^-6, 15 10^-6}};
GiveMePSpoints(SS, r0, (Theta)0, EE, LL, konec, Black)

C++ method to call a specific function without if/elseif/elseif/elseif/else

Here is the code’s review of my problem that I solved on the post below the code.
An user asked me to post it here to talk about my code)

#include <iostream>
#define NB_FORMS 3

/**/

class Form
{
  public:
    Form() { }
    virtual ~Form() { }
};

class Square : public Form
{
  public:
    Square() { std::cout << "Squareee!" << std::endl; }
     static Form *createForm(void)
     {
       return (new Square());
     }
};

class Rectangle : public Form
{
  public:
    Rectangle() { std::cout << "Rectangleee!" << std::endl; }
    static Form *createForm(void)
    {
      return (new Rectangle());
    }
};

class Triangle : public Form
{
  public:
    Triangle() { std::cout << "Triangleee!" << std::endl; }
    static Form *createForm(void)
    {
      return (new Triangle());
    }
};

struct        s_makeForms
{
    std::string        formName;
    Form            *(*makeForm)();
};

/* */

Form *func(std::string name)
{
  struct s_makeForms allForms(3) =
  {
      {"triangle",  Triangle::createForm}, 
      {"rectangle", Rectangle::createForm},
      {"square", Square::createForm}
  };
  for (int i = 0; i < NB_FORMS; i++)
  {
    if (name == allForms(i).formName)
      return (allForms(i).makeForm());
  }
  return (NULL);
}

int main()
{
  Form *myform;

  if (!(myform = func("square")))
  {
    std::cerr << "wrong name" << std::endl;
  }
}

https://stackoverflow.com/questions/67406276/c-method-to-call-a-specific-function-without-if-elseif-elseif-elseif-else/67406974#67406974

classes – Calling a nested method of a class Python

I want to test the output of the “isPalindrome” function with parameters 0 and 1. How can I call isPalindrome function directly?

I tried with:

e = "aaabaaaa"
result = Solution2.longestPalindrome(e)
pal = result.isPalindrome(0, 1)
class Solution2:
    @classmethod
    def longestPalindrome(self, s):
        if len(s) < 1:
            return s

        def isPalindrome(left, right):
            return print(s(left:right) == s(left:right)(::-1))

        left, right = 0, 1
        for index in range(1, len(s)):
            if index - right > 0 and isPalindrome(index - right - 1, index + 1):
                left, right = index - right - 1, right + 2
            if index - right >= 0 and isPalindrome(index - right, index + 1):
                left, right = index - right, right + 1
        return s(left: left + right)

DreamProxies - Cheapest USA Elite Private Proxies 100 Private Proxies 200 Private Proxies 400 Private Proxies 1000 Private Proxies 2000 Private Proxies ExtraProxies.com - Buy Cheap Private Proxies Buy 50 Private Proxies Buy 100 Private Proxies Buy 200 Private Proxies Buy 500 Private Proxies Buy 1000 Private Proxies Buy 2000 Private Proxies ProxiesLive Proxies-free.com New Proxy Lists Every Day Proxies123