js

BlackHatKings: Crypto speculation and investment
Posted by: MervinROX
Post Time: June 20, 2019 at 1:38 pm.

Script Web Part – List View – Priority Color

I've viewed List View – Priority Color by Shannak and can edit a to-do list but not a regular list.

Below is an example of what I want to achieve.

What I am trying to achieve

The code I use is:


I can not use calculated columns because administrators disable this feature. At the moment it works like that, but now other ways have to be found to do the same.

2019 rq

2019 rq[IMG]https: //i110.fastpic****big/2019/0524/e7/753c7313946d8ea7701778e48fc59ce7.jpg[/IMG] I I I 2. 01:50. 4 1989 ,,. 5.1. 2: 2019. tv-.23. 20192). June 11, 2014Speed ​​dating for older adults is far more common and Corning Gorilla 2: (2016) HD. 70%. Basil Smash. Samsung Galaxy View 2. Galaxy View 2 13:49. 2 :. 09:50 :: (65). , , , : 2014 ,,,,. 2 2 (54). , , , IQ; 90: 2019. II: 3D ,,, II: Mariokino. 5:01 pm10: 55am 02192019 0 25 – !, Ukpagetitle, uktranslationscount 0, 103 1, 145 2, 105 32975, II (), 59 2976, II (), 64 29773804, 45 3805, 56 3806,, 93 3807, 4804.1468.95 4805.1552.99 4806.1469.98 4807, 35 4808.1553.96 100 2016-2020 (2019) 2. – (+2017) 3 .: (2016), "1964" 2 2 ( 2019) 5,8. 3. 2002 ,,. 5,6films-2018.online. . 0+. 80 0+. 17:10. 3D. 18:15. IMAX 3D. 19:45. 3D. 20:45. IMAX 3D. 22:20. 3D. 23:15. IMAX 3D.:. : HD720 (), & # 39 ;,. , -. 2 (2018) (2018). , Submitted by Jessieunarm on Thu, 01242019 – 17:55 Permalink; ; 2: 2: 24. 20192 9- & # 39 ;. , 50, 48. 2 :; ; : 7. 2019 30 180. 2012., "", "II:": 68 ,. 05:57. 2 :. .: 2019-02-23. 2 & # 39 ;. ..:,. : ,,. -. ,,,. . RU. Warner Bros.: Comic-Con -. – ,,. ,,,,,. 2014. 30 2019.: (2019). , . ,,,,. II ::. ,,, & # 39 ;. , & # 39 ;. 2019.. . ,,,. & # 39; ,,,. ""? , , Legendary 2 2019GODZILLA. 10. (Godzilla) "2" 2019 – 2 King Kong Vs. Godzilla 2ASM. 11 2. 4. 11 2. Lego Shin Godzilla 2 Part 1World of the Hunter. 7: (2019). , : Na10. N / A. , :. : 12: 30 2019.: ,,. :. : ,,. : ,,. , , . , 2: (2019) HD. . . , :: ,,,,,. (2019). Download video. Chia s. 2: Godzilla: King of Monsters, 2019. & # 39 ;: 31. 2019: 31 16:49 10! 13: 27EVOLUTION OF GODZILLA in Movies (1954-2019) Godzilla King of the13: 09 7! :, (1998) HD. : (). , 1 .. 1. 2. 3. 4 II: Godzilla: King of the Monsters: 2019 ::: Warner Bros. Pictures, Legendary Pictures: ,,, (): .2019 (): .2019: IMDB :: 10: 100 .:? , , II :. , . 110. 1998 K 21 2019.: ,,: ,,,,,. 2: 2: 3. FilmSelect 3. II :. 2.27. 219 11 2018. 2 II: (). 02:25. 2254 10 2018. 2 II: (): II: (30), (1) ,: (31), (12), – (14), 2 (17), 3 (16), 4 (19), 5 (18). RSS. Movie ,. Copyright 20062019 ..: Godzilla. Godzilla. : morloc14: 12: 2014: 720p: 2.13: 136: 0 :. BaZaRkO. +5. 2014. (2014) HD. : (). , 1 .. 1. 2. 3. () HD. godzilla-korol-monstriv :: 2DIMAX :: Warner Bros..,. ,,,,,. (1998) HD 720. -. , , 1998 ,,, Full HD 02:19:59. IMDb. , , VIP Megahit HD. .20: 00.- 2 (Godzilla King of the Monsters) – "Only One". 0:00:31. – DJ Tolunay – Godzilla godzilla! mp3. – Godzilla! , :. Godzilla: King of the monsters. (3). -. : 30 2019. – ,. . ,,,,,. ,,,,. -? , , , : 282. -. , ! , , The Lion King 2019.:. : 2019 2019 "". , -. . – ,,. , , 2: (2019) HD. . .201020. 12. 18:21. , : i 2019 i hdi 2019 i 2019 hd 2019: http: //vocal-buzz.ning.com/profiles/…yb69gk93j8aerm.

MervinROX
Reviewed by MervinROX on
,
2019 rq
2019 rqhttps: //i110.fastpic*****big/2019/0524/e7/753c7313946d8ea7701778e48fc59ce7.jpg i i i 2. 01:50. 4 1989 ,,. 5.1. 2: 2019. tv-.23. 20192). June 11, 2014Speed ​​dating for older adults is far more common and Corning Gorilla 2: (2016) HD. 70%. Basil Smash. Samsung Galaxy View 2. Galaxy View 2 13:49. 2 :. 09:50 :: (65). , , , : 2014 ,,,,. 2 2 (54). , , , IQ; 90:
Rating: 5

,

sharepoint online – I would like to use the Content Search web part only to display document libraries

So I used the Advanced Query Builder to display only document libraries because I have a workflow that generates many packages.

Path: "Site URL" (Content Class: STS_List_DocumentLibrary)

Only a few libraries are shown here, but also the general document libraries. How can I narrow down my query to search only "FY" in the title of the document libraries? Thank you.

Differential Equations – Errors The expression can not be used as a part specification, simple case, and compound to fit multiple data

So, I have a very simple question that relates to a simple topic, but also directly to an appropriate problem.
I see that my question is related to it [this question] (Minimization with indexes, error: Part :: pkspec1: The expression can not be used as a part specification), but I can not beat the bridge between them.

The basic question is how to create a function that looks like this:

list = {{1, 2}, 2, {3, 4, 8, 12}, 4, {2, 2, 2, 2, 2}}
F[x_] = List[[x]]

And I would like to use it in the following context:

err[Vinitphi_?NumberQ, l_?NumberQ, nc_?NumberQ, tauC_?NumberQ, 
  tauG_?NumberQ, D0_?NumberQ, k_] =
With[{model = (Rad /. pfun)[Vinitphi, l, nc, tauC, tauG, D0]},
standard[rad[[k]][[2;;length[[2Length;;[[2;;Länge[[2;;Length[rad[[k]]], 2]]-
model / @ rad[[k]][[2;;length[[2Length;;[[2;;Länge[[2;;Length[rad[[k]]], 1]]]]fit = FindMinimum[{Sum[
    err[Vinitphi/2^(i - 1), l, nc, tauC, tauG, D0, i], {i, 1, 6, 1}].
5 * 10 ^ 7 <Vinitphi <9 * 10 ^ 7, 20 <1 <25, 0.05 <tauC <0.5,
0.2 <nc <0.8,
4 * 10 ^ (10) <D0 <2 * 10 ^ (11)}, {{Vinitphi, 6 * 10 ^ 7}, {nc, 0,5}, {tauC,
0,2}, {D0, 6 * 10 ^ (10)}}]

Where can I get the error?

Part :: pkspec1: The expression k can not be used as a part specification.

Could you please help?

I'm writing ParametricNDSolve in the following appendix, which I'll take care of:

Cecum:

rad = {{{0., 117.705}, {3., 148.255}, {6., 176.81}, {9., 183.561}, {12.,
197.419}, {15., 210.672}, {18., 211.152}, {21., 209.889}, {24.
207.741}, {27., 204.352}, {30., 201.79}, {33., 199.976}, {36.,
199.04}, {39., 197.151}, {42., 197.584}, {45., 196.198}, {48.,
195.153}, {51., 195.711}, {54., 194.088}, {57., 193.304}, {60.,
192.474}, {63., 192.13}, {66., 192.877}, {69., 192.371}, {72.,
192.657}, {75., 190.984}, {78., 190.685}, {81., 190.449}, {84.,
189.83}, {87., 189.625}, {90., 194.855}, {93., 186.581}, {96.,
184,735}, {99., 184.586}, {102., 183.505}, {105., 181.531}, {108.,
179,925}, {111., 178,428}, {114., 176,164}, {117., 175,375}, {120.
174.782}, {123., 172.649}, {126., 170.454}, {129.,
168.357}, {132., 168.04}, {135., 167.26}, {138., 165.657}, {141.,
164.797}, {144., 163.705}, {147., 161.214}, {150., 160.5}, {153.,
159,353}, {156., 157.873}, {159., 157.225}}, {{0., 51.7792}, {3.,
80.825}, {6., 108.913}, {9., 121.147}, {12., 130.805}, {15.,
140, 562}, {18, 143, 615}, {21, 146, 513}, {24, 147, 63}, {27,
147,12}, {30, 146,693}, {33., 147,396}, {36., 148,256}, {39.
147.737}, {42., 148.685}, {45., 149.043}, {48., 147.814}, {51.,
148.776}, {54., 147.959}, {57., 147.775}, {60., 148.031}, {63.,
148,284}, {66, 148,334}, {69, 148,521}, {72, 148,974}, {75.
146,562}, {78., 145.734}, {81., 145.177}, {84., 145.588}, {87.,
144,949}, {90, 147, 035}, {93, 141, 755}, {96, 140, 841}, {99,
139.94}, {102., 138.25}, {105., 136.508}, {108., 135.52}, {111.
133.758}, {114., 132.694}, {117., 131.744}, {120., 131.208}, {123.,
130,292}, {126., 127.612}, {129., 126.981}, {132.,
127,035}, {135, 125,198}, {138, 123,557}, {141, 123,946}, {144,
120,738}, {147, 119,875}, {150, 118,828}, {153,
118.162}, {156., 117.363}, {159., 116.712}, {{0., 29.62}, {3.,
53.1414}, {6., 67.2233}, {9., 82.5676}, {12., 83.5019}, {15.,
92.3142}, {18., 98.9869}, {21., 102.557}, {24., 106.481}, {27.,
107.188}, {30., 107.637}, {33., 108.415}, {36., 109.622}, {39.,
110,593}, {42., 111.205}, {45., 111.396}, {48., 111.668}, {51.,
114.126}, {54., 113.3}, {57., 114.27}, {60., 114.849}, {63.,
110.808}, {66., 116.51}, {69., 118.796}, {72., 119.636}, {75.,
118.02}, {78., 116.026}, {81., 116.767}, {84., 116.994}, {87.,
119, 169}, {90, 121,246}, {93, 116,291}, {96, 117,296}, {99,
117.72}, {102., 115.814}, {105., 114.76}, {108., 114.853}, {111.,
113.886}, {114., 112.522}, {117., 112.109}, {120., 112.376}, {123.,
110,998}, {126., 109.708}, {129., 108.926}, {132.,
108,075}, {135., 107.182}, {138., 106.723}, {141., 106.562}, {144.,
103.807}, {147., 102.798}, {150., 102.333}, {153.,
101.633}, {156., 100.395}, {159., 99.889}}, {{0., 79.5768}, {3.
86.0729}, {6., 101.334}, {9., 103.158}, {12., 104.818}, {15.,
104.534}, {18., 104.361}, {21., 105.568}, {24., 107.109}, {27.,
105,042}, {30., 105.165}, {33., 107.669}, {36., 108.182}, {39.
108,549}, {42., 109.208}, {45., 109.714}, {48., 110.098}, {51.,
110.481}, {54., 110.373}, {57., 110.563}, {60., 111.115}, {63.,
111.766}, {66., 112.415}, {69., 113.322}, {72., 113.272}, {75.,
113,95}, {78., 113,98}, {81., 114,017}, {84., 111,879}, {87.,
114.706}, {90., 112.125}, {93., 109.696}, {96., 112.481}, {99.,
109,528}, {102., 108.22}, {105., 108.112}, {108., 107.387}, {111.
106,369}, {114., 106.522}, {117., 105.678}, {120., 111.234}, {123.,
109,391}, {126., 104.95}, {129., 109.079}, {132., 109.363}, {135.,
100,807}, {138., 99.9696}, {141., 100.622}, {144., 99.789}, {147.,
98.5068}, {150., 99.6161}, {153., 97.4872}, {156.,
101.554}, {159., 101.406}, {{0., 30.4597}, {3., 35.889}, {6.
45.7724}, {9., 54.0641}, {12., 56.851}, {15., 59.1402}, {18.
61.0664}, {21., 63.1851}, {24., 65.2428}, {27., 66.6239}, {30.,
67.5882}, {33., 68.5353}, {36., 69.885}, {39., 71.1742}, {42.,
72.485}, {45., 73.2793}, {48., 74.2798}, {51., 74.7271}, {54.,
74.8248}, {57., 75.83}, {60., 76.1228}, {63., 77.5324}, {66.,
76.4005}, {69., 77.5578}, {72., 80.4519}, {75., 80.1548}, {78.,
80.1533}, {81., 79.2626}, {84., 79.6456}, {87., 79.5882}, {90.,
78,9125}, {93., 77.5023}, {96., 80.9046}, {99., 78.125}, {102.,
78.1087}, {105., 82.0064}, {108., 80.6066}, {111., 82.9245}, {114.,
83.6384}, {117., 82.0775}, {120., 81.1198}, {123., 75.248}, {126.,
78.1893}, {129., 72.6991}, {132., 72.683}, {135., 80.5139}, {138.,
83.442}, {141., 81.0871}, {144., 80.1472}, {147., 79.3543}, {150.,
79.0979}, {153., 79.0636}, {156., 78.3953}, {159.,
77.2895}}, {{0., 27.5731}, {3., 27.4456}, {6., 37.2589}, {9.,
40,9683}, {12, 43,2509}, {15, 44,3384}, {18, 46,5891}, {21.
48.0219}, {24., 49.6954}, {27., 51.1536}, {30., 51.7754}, {33.,
53.2019}, {36., 54.9082}, {39., 55.9732}, {42., 57.3092}, {45.,
58.6397}, {48., 58.9803}, {51., 58.6734}, {54., 60.6691}, {57.,
61.3107}, {60., 62.1459}, {63., 63.2534}, {66., 64.1169}, {69.,
64.7201}, {72., 65.4561}, {75., 65.7958}, {78., 65.9518}, {81.,
66,9163}, {84., 67.5038}, {87., 64.925}, {90., 69.8176}, {93.,
65.8334}, {96., 69.2665}, {99., 66.6777}, {102., 65.9855}, {105.,
69.4403}, {108., 70.2052}, {111., 69.9442}, {114., 70.7562}, {117.
70.3714}, {120., 63.5385}, {123., 62.8021}, {126.,
67.0399}, {129., 61.5096}, {132., 63.1028}, {135., 70.3602}, {138.,
70.2032}, {141., 69.4146}, {144., 68.2243}, {147.
67.9524}, {150., 67.8477}, {153., 68.2036}, {156., 68.2165}, {159.,
67.5863}}}

pfun = ParametricNDSolve[{Derivative[1][V][
     t]    == - ((
D0 (E ^ (- ((L + tv) ^ 2 / (4 D0t))) (-L + tv) Vinitphi) / ((D0t) ^ (
3/2) * 4 * Sqrt[Pi]* phi0)) + (
2 Vphi
2 (1 - Vphi
phic) ^ 2 tauC V
1/3)) - (-nc V
4 l L nL0 [Pi] csch[((E^(((aVphi[((E^(((aVphi[((E^(((aVphi[((E^(((aVphi
2 V
2 ^ (2/3) l)](-E ^ (- (a Vphi
l ^ 2 Sinh[((E^(((aVphi[((E^(((aVphi[((E^(((aVphi[((E^(((aVphi
1/3)) (V
E ^ (- (a Vphi
cosh[((E^(((aVphi[((E^(((aVphi[((E^(((aVphi[((E^(((aVphi
V
2/3))) / (-L Coth[((E^(((aVphi[((E^(((aVphi[((E^(((aVphi[((E^(((aVphi
2 V
2 ^ (2/3) l)]+ ((3 / [Pi]) ^ (1/3)
coth[((E^(((aVphi[((E^(((aVphi[((E^(((aVphi[((E^(((aVphi
V
TauG, V[eps] == 10,
derivative[1][Vphi][
     t]    == - ((D0 (E ^ (- ((L + tv) ^ 2 / (4 D0 t)))) (-L + tv) Vinitphi) / (
4 * Sqrt[Pi]* phi0 (D0 t) ^ (3/2))) + ((
VPHI
4 l L nL0 [Pi] csch[((E^(((aVphi[((E^(((aVphi[((E^(((aVphi[((E^(((aVphi
2 V
2 ^ (2/3) l)](-E ^ (- (a Vphi
l ^ 2 Sinh[((E^(((aVphi[((E^(((aVphi[((E^(((aVphi[((E^(((aVphi
1/3)) (V
E ^ (- (a Vphi
cosh[((E^(((aVphi[((E^(((aVphi[((E^(((aVphi[((E^(((aVphi
V
2/3))) / (-L Coth[((E^(((aVphi[((E^(((aVphi[((E^(((aVphi[((E^(((aVphi
2 V
2 ^ (2/3) l)]+ ((3 / [Pi]) ^ (1/3)
coth[((E^(((aVphi[((E^(((aVphi[((E^(((aVphi[((E^(((aVphi
V
V
Rad & # 39;
wheel[eps] == 3/4 Pi}, {V, Vphi, Rad}, {t, eps, 170}, {Vinitphi, l,
nc, tauC, tauG, D0},
Method -> {"EquationSimplification" -> "Residual"}]

You can check if my initial guess is not bad:
Enter image description here

CPU Cache – Are CPU Registers Part of Primary Memory?

A friend of mine has recently appeared in an exam, and one of the questions asked concerned CPU registers, which have two points:

  • (a) CPU registers are part of the primary memory
  • (b) They are fleeting

And the choices were:

  1. Both (a) and (b) are true
  2. Only (a) is true
  3. Only (b) is true
  4. None of the above

They are volatile. So the second and fourth option can be avoided. The confusion involved whether it was part of the primary memory. To my knowledge, CPU caches, RAMs and ROMs can be called primary storage. But are CPU registers called as part of the primary memory? Or is it considered Level0 caches?

spfx – People Picker Control in Sharepoint Framework Web Part (no Javascript Framework)

I'm new to SPFx and have an SPFx Web Part form project with the No JavaScript Framework option. In this I have to implement a people picker. I have to implement the form both as a new and as an edit form, i. H. In the new mode, People Picker is used to select a user, and in Edit mode, details are retrieved from a Sharepoint list and the People Picker is populated with the user details.

I'm following the Microsoft SPFX development thread:
https://docs.microsoft.com/en-us/sharepoint/dev/

Many Thanks

Border of the real part of a geometric sequence

I came across the following problem, which turned out to be surprisingly difficult:

Show that $ underset {n rightarrow infty} { lim} left | mathrm {Re} (( frac {1 + i sqrt {7}} {2}) ^ n) right | = infty. $

Intuitively adjust $ z = frac {1 + i sqrt {7}} {2} = sqrt {2} e ^ {i theta}, $ we see that $ | mathrm {Re} (z ^ n) | = 2 ^ { frac {n} {2}} | cos (n theta) |, $ so long as that $ n theta ( mathrm {mod} pi) $ does not approach $ frac { pi} {2} $ exponentially fast at subsequences, $ | mathrm {Re} (z ^ n) | $ should go $ infty. $ But how can you prove that?

Here is a sub-argument:

to adjust $ z ^ n = frac {a_n + i b_n sqrt {7}} {2} $ from where $ a_n, b_n in mathbb {Z}. $ Then take square modules, $ a_n, b_n $ and $ d = n + 2 $ are integer solutions of the Diophantine equation:

$$ 2 ^ d = a ^ 2 + 7b ^ 2. $$

Then the abc conjecture implies that this equation finally has many solutions with bounds $ a. $

I would like to see an elementary solution to this problem.

script – Identify ScriptSig types and analyze each part

The only way to recognize the type is to analyze it as a program.

All scripts from Bitcoin are written in the Bitcoin scripting language. As in any other programming language, certain symbols have special meaning and correspond to certain opcodes that are displayed in the raw hex format. A list of Op codes can be found in the Bitcoin Wiki: https://en.bitcoin.it/wiki/Script#Opcodes

The standardized scripts, which are normally represented as addresses, are actually only excerpts from Bitcoin Script programs. For example, a P2PKH "address" is actually only half a program in the form of:

OP_DUP OP_HASH160  OP_EQUALVERIFY OP_CHECKSIG

In combination with the remaining half of the program, which is provided as ScriptSig when the coins are issued, you will receive a complete program that can be evaluated.

To determine the script type, you only have to parse the program (or the subprogram in case of output) and check if it corresponds to a known, standardized type.