I see this example in the help `SymmetrizedIndependentComponents`

We can see this matrix `A`

has only four independent components:

```
A = {{{a, b}, {b, c}}, {{b, c}, {c, d}}};
sym = TensorSymmetry[A]
SymmetrizedIndependentComponents[Dimensions@A, sym]
SymmetrizedArrayRules[A, sym]
```

But if I apply the above method to the fourth order tensor, I encounter a problem with the matrix `t`

should only have two independent components, but the result shows that there are 36 independent components:

```
t = {{{{a, 0, 0}, {0, b, 0}, {0, 0, 0}}, {{0, 0, 0}, {0, 0, 0}, {0, 0,
0}}, {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}}, {{{0, 0, 0}, {0, 0,
0}, {0, 0, 0}}, {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}, {{0, 0,
0}, {0, 0, 0}, {0, 0, 0}}}, {{{0, 0, 0}, {0, 0, 0}, {0, 0,
0}}, {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}, {{0, 0, 0}, {0, 0,
0}, {0, 0, 0}}}}
sym = TensorSymmetry
Dimensions@t
SymmetrizedIndependentComponents[Dimensions@t, sym] // Length
```

What should I do to get the fourth order tensor with only two independent components?

```
SymmetrizedIndependentComponents[{3, 3, 3,
3}, {{{2, 1, 3, 4}, -1}, {{3, 4, 2, 1}, 1}}] // Length
```