Universality in the class of separable Banach algebras

Let us consider the class of Banach algebras with homomorphisms that are bounded below but not necessarily isometric.

  1. Is there are separable Banach algebra that contains isomorphic images of all separable Banach algebras?

  2. Is there a commutative separable Banach algebra that contains commutative separable Banach algebras?

The trick with bounded the distance between commuting projections (of arbitrary norm) does not work in either case.